HETEROGENEOUS QUANTUM COMPUTING FOR SATELLITE OPTIMIZATION

GIDEON BASS

BOOZ ALLEN HAMILTON

September 2017

COLLABORATORS AND PARTNERS

Booz Allen Hamilton Restricted, Client Proprietary, and Business Confidential

Special thanks to:

- **Brad Lackey** (UMD/QuICS) for advice and suggestions and
- **USRA** for D-Wave access

Dimode The Quantum Computing Company™

Our Team

JD Dulny

Senior Lead Scientist dulnyiii_joseph@bah.com

Ray Hensberger

Principal hensberger_raymond@bah.com

Graham Gilmer

Senior Associate gilmer_graham@bah.com

Vaibhaw Kumar

Staff Scientist kumar_vaibwaw@bah.com

Gideon Bass

Lead Scientist bass_gideon@bah.com

Casey Tomlin

Lead Scientist Tomlin_casey@bah.com

Josh Sullivan

Officer sullivan_joshua@bah.com

AGENDA

+ Quantum Annealing in the field

+ Problem Statement

+ Results

+ Conclusions

Booz Allen Hamilton Restricted, Client Proprietary, and Business Confidential.

QUANTUM ANNEALING HAS MANY REAL-WORLD APPLICATIONS

Booz Allen Hamilton Restricted, Client Proprietary, and Business Confidential

BOOZ ALLEN . DIGITAL

HOWEVER MOST RESEARCH HAS BEEN THEORETICAL

Booz Allen Hamilton Restricted, Client Proprietary, and Business Confidential.

BOOZ ALLEN • DIGITAL

On the readiness of quantum optimization machines for industrial applications

Alejandro Perdomo-Ortiz,^{1,2,3,*} Alexander Feldman,⁴ Asier Ozaeta,⁵ Sergei V. Isakov,⁶ Zheng Zhu,⁷ Bryan O'Gorman,^{1,8,9} Helmut G. Katzgraber,^{7,10,11} Alexander Diedrich,¹² Hartmut Neven,¹³ Johan de Kleer,⁴ Brad Lackey,^{14,15,16} and Rupak Biswas¹⁷ ¹ Quantum Artificial Intelligence Lab., NASA Ames Research Center, Moffett Field, California 94035, USA ²USRA Research Institute for Advanced Computer Science (RIACS), Mountani View California 94043, USA

³Department of Computer Science, University College London, WC1E 6BT London, UK ⁴Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304, USA ⁵OC Ware Corp., 125 University Ave., Suite 260, Palo Alto, California 94301, USA ⁶Google Inc., 8002 Zurich, Switzerland ⁷Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843-4242, USA ⁸Berkeley Center for Quantum Information and Computation, Berkeley, California 94720 USA ⁹Department of Chemistry, University of California, Berkeley, California 94720 USA ¹⁰1QB Information Technologies (1QBit), Vancouver, British Columbia, Canada V6B 4W4 ¹¹Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA ¹²Fraunhofer IOSB-INA, Lemgo, Germany ¹³Google Inc., Venice, California 90291, USA ¹⁴ Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA ¹⁵Departments of Computer Science and Mathematics, University of Maryland, College Park, Maryland 20742, USA al Security Agency, Ft. George G. Meade, Maryland 20755, USA IASA Ames Research Center, Moffett Field, California 94035, USA

(Dated: September 1, 2017)

Traffic flow optimization using a quantum annealer

Florian Neukart^{*1}, David Von Dollen¹, Gabriele Compostella², Christian Seidel², Sheir Yarkoni³, and Bob Parney³

> ¹Volkswagen Group of America, San Francisco, USA ²Volkswagen Data:Lab, Munich, Germany ³D-Wave Systems, Inc., Burnaby, Canada

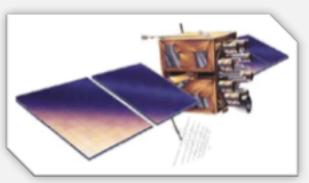
Abstract

Quantum annealing algorithms belong to the class of meta-heuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum processing units (QPUs) produced by D-Wave Systems, have been subject to multiple analyses in research, with the aim of characterizing the technology's usefulness for optimization and sampling tasks. In this paper, we present a real-world application that uses quantum technologies. Specifically, we show how to map certain parts of a real-world traffic flow optimization problem to be suitable for quantum annealing. We show that time-critical optimization tasks, such as continuous redistribution of position data for cars in dense road networks, are suitable candidates for quantum computing. Due to the limited size and connectivity monstrate that quantum annealing and, in particular, quantum annealthe potential to outperform current classical optimization algorithms he benchmarking of these devices has been controversial. Initially, however, these were quickly shown to be not well suited to detect chmarking shifted to carefully crafted synthetic problems designed

Satellite Coverage Quantum Optimization

SATELLITE COVERAGE OPTIMIZATION

Booz Allen Hamilton Restricted, Client Proprietary, and Business Confidential.

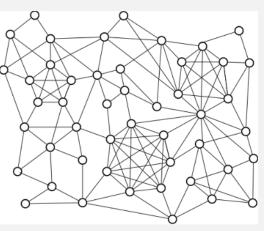

Booz | Allen | Hamilton

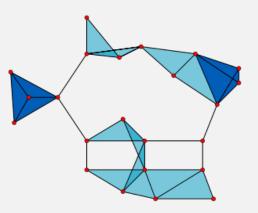
BOOZ ALLEN • DIGITAL

Summary: Group satellite together in such a way as to maximize coverage.

Data: For any possible grouping of satellites, a coverage percentage

Goal: Assign each of N satellites to k groups, such that total mean coverage is maximized


- + Satellites change position and require constant reoptimization
- Brute force solving is out of the question; even trivial subsets of the satellites form too many combinations to check.
- + Quantum technology offers a promise to perform
 combinatorial optimization
 much faster, while yielding
 better coverage outcomes.


THE WEIGHTED K-CLIQUE PROBLEM

Booz Allen Hamilton Restricted, Client Proprietary, and Business Confidential.

This problem can be reformulated as a graph problem, called the k-clique problem

- Each potential group of satellites in a sub-constellation can be considered a node on a graph
 - Each node is given a weight equal to the coverage provided
 - If both sub-constellation use the same satellite, the nodes are unconnected
 - The goal is thus to find the k nodes with the highest total weight that are all mutually connected (a "clique")
- + This problem can then be expressed as a QUBO, and sent to the quantum computer

DESIGNING THE QUBO

Constraints:

- 1. Choose only nodes that are connected
- 2. Maximize the sum of coverages for each group chosen
- Choose a number of qubits equal to the number of available satellites

Booz Allen Hamilton Restricted, Client Proprietary, and Business Confidential.

BOOZ ALLEN + DIGITAL

Each (logical) qubit represents a potential grouping of satellites

Connections represent a grouping that is non-overlapping (does not use the same satellite in multiple groups)

$$H = \sum_{i < j} 2(w_i + w_j)$$

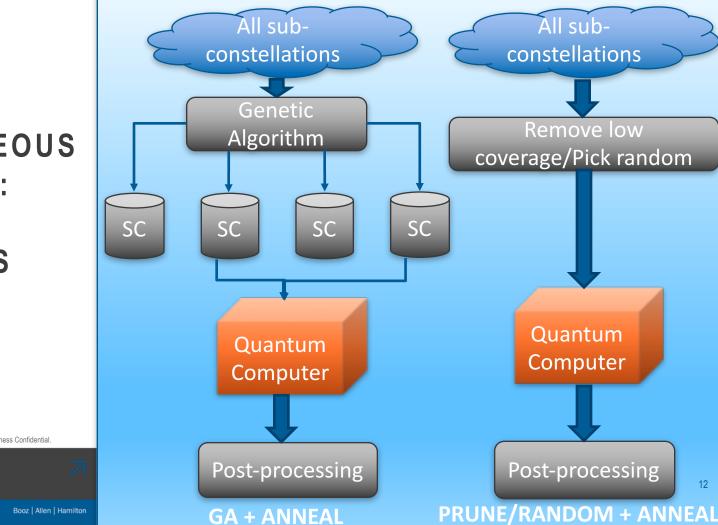
$$H = \sum_{i} -Aw_{i}x_{i}$$

$$H = W \left(\sum_{i} x_{i} - 8 \right)^{2} = 64W - \sum_{i} 8Wx_{i} + \sum_{i < j} x_{i}x_{j}$$

W is the qubit maximum weight

QUANTUM HARDWARE IS RAPIDLY MATURING + This satellite optimization problem is a prime candidate for a quantum approach when used in concert with classical computing resources.

- + The application to satellites could be **the first major quantum success** when applied to a real-world full-scale problem.
- + However, with current numbers, we would still need 10^4-10^5 qubits to fully embed this problem
- + Thus, we created a heterogeneous approach that combines classical processing and quantum annealing


Booz Allen Hamilton Restricted, Client Proprietary, and Business Confidential

BOOZ ALLEN . DIGITAL

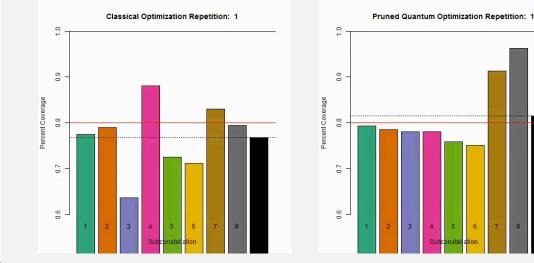
Booz | Allen | Hamilton

HETEROGENEOUS TECHNIQUES: TWO **APPROACHES**

Booz Allen Hamilton Restricted, Client Proprietary, and Business Confidential

12

HETEROGENEOUS COMPUTING MODELS

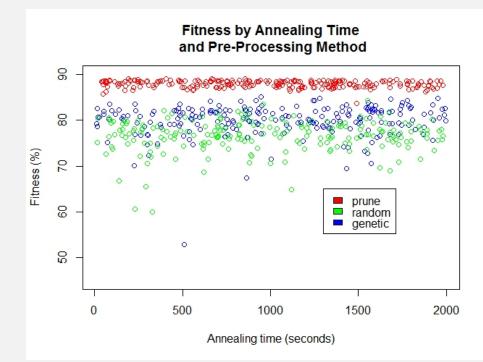

Booz Allen Hamilton Restricted, Client Proprietary, and Business Confidential.

Method	Pros	Cons
Classical Heuristics	Can provide fairly good results. Can be run on classical machine.	Cannot be run on current QA devices, no quantum speed-up, scaling uncertain
GA pre-processing	Searches full decision space, produces solid results	Middle of the road performance and speed, many parameters to tune
Prune and Anneal	Very good results in good time, most similar to existing technique	Does not explore full solution space, requires domain knowledge

RESULTS COMPARISON: QUANTUM SIMULATOR

Booz Allen Hamilton Restricted, Client Proprietary, and Business Confidential

- An 80% coverage(red) is the minimum acceptable average.
- The eight colored bars represent individual sets, black bar (and dotted line) is overall average
- Quantum approach is faster and finds a significantly better results

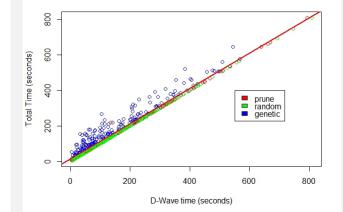

Purely **Classical** Genetic Algorithm Simulated **Quantum** Prune and Anneal

RESULTS COMPARISON: D-WAVE

Booz Allen Hamilton Restricted, Client Proprietary, and Business Confidential

BOOZ ALLEN • DIGITAL

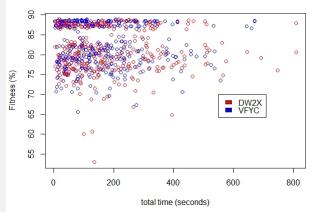
Booz | Allen | Hamilton



- Results are nearly constant with processing time
- Results are highly dependent on pre-processing method (color)
 - 80% is minimal acceptable
 - 90% is likely near the true maximum.

RESULTS COMPARISON: D-WAVE

Booz Allen Hamilton Restricted, Client Proprietary, and Business Confidential.


D-Wave time (seconds) vs. Total Time (seconds)

 D-Wave time makes up most of the time, GA adds a little more

 Including D-Wave's "Virtual Full Yield" does not significantly change performance while improving portability

SUMMARY

Booz Allen Hamilton Restricted, Client Proprietary, and Business Confidential

Booz | Allen | Hamilton

Method	Uses Domain- Knowledge	Time Needed	Performance
Prune + Anneal	✓	Very Little	90%
GA + Anneal	X	Some	80-85%
Random + Anneal	X	Very Little	75-80%

- The D-Wave functions best as a co-processor
- Performance is highly dependent on problem • formulation, classical processing step
- Quantum portion does appear to provide significant improvement.

17

CONCLUSIONS

Booz Allen Hamilton Restricted, Client Proprietary, and Business Confidential.

- + As problems and datasets grow, modern computing systems have had to scale with them. Quantum computing offers a totally new and potentially disruptive computing paradigm.
- + For problems like this satellite optimization problem, heterogeneous quantum techniques will be required to solve the problem at larger scales.
- + Preliminary results on this problem using heterogeneous classical/quantum solutions are very promising.
- + Exploratory studies in this area have the potential to break new ground as one of the first applications of quantum computing to a real-world problem

Thank You

GIDEON BASS BOOZ ALLEN HAMILTON

HTTPS://ARXIV.ORG/ABS/1709.05381

