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D-Wave	System	Capability
1) As a discrete optimization solver:

2) As a physical device to sample from Boltzmann distribution:

Potential NASA applications: 
- planning
- scheduling 
- fault diagnosis 
- graph analysis 
- communication networks, etc.

QUBO: Quadratic Unconstrained 
Binary Optimization 
(Ising model in physics jargon).

Computationally 
bottleneck

Our work: Benedetti et al. PRA 94, 022308 (2016) 

• Algorithm uses the same samples that will be used for the estimation of 
the gradient

• We provide a robust algorithm to estimate the effective temperature of 
problem instances in quantum annealers. 
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Early work:
Bian et al. 2010. The Ising model: teaching an old problem new tricks.

Follow-up work:
Raymond et al. Global warming: Temperature estimation in annealers. 
Frontiers in ICT, 3, 23 (2016).  

Widely used in 
unsupervised 
learning

Visible units

Hidden units
RBM

Potential NASA applications: 
- machine leaning (e.g., training 

of deep-learning networks)



Learning 
algorithm

MODEL
P ( Image )
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Unsupervised learning (generative models)

NO LABELS

Learn the “best” model distribution that 
can generate the same kind of data



Learning 
algorithm
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Example application:
Image reconstruction

Damaged 
image

Unsupervised learning (generative models)

NO LABELS

Learn the “best” model distribution that 
can generate the same kind of data

Reconstructed 
image



Learning 
algorithm

MODEL
P ( Label | Image )

LEARNED MODEL
P ( Label | Image )

Supervised learning (discriminative models)

Learn the “best” model that can 
perform a specific task

Example application:
Image recognition
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A	near-term	approach	for	quantum-enhanced	machine	learning	
State-of-the-art	QML

- Need	for	qRAM (case	of	most	gate-
based	proposal).

- Qubits	represent	visible	units;	issue	
for	case	of	large	datasets	

- Most	previous	proposed	work	have	
highly	optimized	powerful	classical	
counterparts	(e.g.,	on	
discriminative/classification	tasks)

Probabilistic 
programming

Potential impact across social and natural sciences, engineering, and more

Hypothesis: intractable sampling problems enhanced by quantum sampling

Deep
learning Others...Bayesian

inference

Lesson	1:	Move	to	intractable	problems		of	interest	to	ML	experts	(e.g.,	
generative	models	in	unsupervised	learning).



A	near-term	approach	for	quantum-enhanced	machine	learning	

Lesson	2:	Need	for	novel	hybrid	approaches.

LEARNING

Stochastic gradient descent

Θt+1 = Θt + G [ P(s|Θt) ]

PREDICTIONS

F [ P(s|Θt) ]

HARD TO COMPUTE

Estimation assisted by sampling 
from quantum computer

DATA

s = {s1,…, sD}

Computationally 
bottleneck

Widely used in 
unsupervised 
learning

Visible units, v

Hidden units, u
RBM

Ex.:	Restricted	Boltzmann	
Machines	(RBM)

hviujip(v,u)
Where,
p(v,u) =

e�E(v,u|✓)/Teff

Z(✓)

Perdomo-Ortiz,	et	al.	Opportunities	and	
Challenges in	Quantum-Assisted	Machine	
Learning	in	Near-term	Quantum	
Computer.	arXiv:1708.09757.	(2017).

Benedetti,	et	al.	Quantum-assisted	
learning	of	graphical	models	with	
arbitrary	pairwise	connectivity.	
arXiv:1609.02542 (2016).

Benedetti,	et	al.	Estimation	of	effective	
temperatures	in	quantum	annealers for	
sampling	applications:	A	case	study	with	
possible	applications	in	deep	learning.	
PRA 94,	022308	(2016).

Benedetti,	et	al.	Quantum-assisted	
Helmholtz	machines:	A	quantum-classical	
deep	learning	framework	for industrial	
datasets	in	near-term	devices.	
arXiv:1708.09784 (2017).

Challenges	solved:
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A	near-term	approach	for	quantum-enhanced	machine	learning	

Challenges	of	the	hybrid	approach:

- Need	to	solve	classical-quantum	model	
mismatch

Training Method: Stochastic gradient ascent

Benedetti	et	al	.	
Phys.	Rev.	A	94,	
022308	(2016)

Classical Quantum-
Teff?

No	significant	progress	in	2010-2015	for	
generative	modeling	and	QA	sampling.	

Visible	units Hidden	units



A	near-term	approach	for	quantum-enhanced	machine	learning	

Resolving	model	mismatch	allows	for	restarting	from	classical	preprocessing

Benedetti	et	al	.	Phys.	Rev.	A	94,	022308	(2016)
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A	near-term	approach	for	quantum-enhanced	machine	learning	

Challenges	of	the	hybrid	approach:

Benedetti	et	al.	
arXiv:1609.02542

Fully	visible	models

Visible	units

- Robustness	to	noise,	
intrinsic	control	errors,	
and	to	deviations	from	
sampling	model	(e.g.,	
Boltzmann)

- Curse	of	limited	
connectivity – parameter	
setting

- Need	to	solve	classical-quantum	model	
mismatch

Training Method: Stochastic gradient ascent

Benedetti	et	al	.	
Phys.	Rev.	A	94,	
022308	(2016)

Classical Quantum-
Teff?
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Visible	units Hidden	units

No	significant	progress	in	2010-2015	for	
generative	modeling	and	QA	sampling.	



Quantum-assisted	unsupervised	learning	on	digits

OptDigits Datasets

Dataset:	Optical	Recognition	of	Handwritten	Digits	(OptDigits)

8x8 7x6 7x6,	binarized

32x32



Quantum-assisted	unsupervised	learning	on	digits

OptDigits Datasets

Dataset:	Optical	Recognition	of	Handwritten	Digits	(OptDigits)



Quantum-assisted	unsupervised	learning	on	digits

46	fully-connected	
logical	(visible)	variables

940	physical	qubits

- Are	the	results	from	this	training	on	940	qubit	
experiment	meaningful?	

- Is	the	model	capable	of	generating	digits?

42	for	pixels	+	4	to	one-hot	encode	the	class	
(only	digits	1-4)

Overcoming	the	curse	of	limited	connectivity in	
hardware.

Min.	CL	=12,	Max.	CL	=	28



Quantum-assisted	unsupervised	learning	on	digits

(quantum) 
machine

Human

Human	or	(quantum)	machine?	(Turing	test)

Dataset:	Optical	Recognition	of	Handwritten	Digits	(OptDigits)

Results	from	experiments	using	940	qubits,	without	post-processing.	
The	hardware-embedded	model	represents	a	46	node	fully	connected	graph.



A	near-term	approach	for	quantum-enhanced	machine	learning	
Challenges	of	the	hybrid	approach:

Benedetti	et	al.	
arXiv:1609.02542

Fully	visible	models

Visible	units

- Robustness	to	noise,	
intrinsic	control	errors,	
and	to	deviations	from	
sampling	model	(e.g.,	
Boltzmann)

- Curse	of	limited	
connectivity – parameter	
setting

How	about	large	complex	datasets	
with	continuous	variables?	
All	previous	fail	to	do	that	(fully	
quantum	and	hybrid	here)

- Need	to	solve	classical-quantum	model	
mismatch

Training Method: Stochastic gradient ascent

Benedetti	et	al	.	
Phys.	Rev.	A	94,	
022308	(2016)

Classical Quantum-
Teff?

No	progress	in	five	years	since	QA	
sampling	was	proposed	as	a	
promissing	appplication.

Visible	units Hidden	units



Perspective	on	quantum-enhanced	machine	learning	
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• New	hybrid	proposal	that	works	directly	on	a	low-dimensional	representation	of	the	
data.



Perspective	on	quantum-enhanced	machine	learning	
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• New	hybrid	proposal	that	works	directly	on	a	low-dimensional	representation	of	the	
data.



Perspective	on	quantum-enhanced	machine	learning	
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• New	hybrid	proposal	that	works	directly	on	a	low-dimensional	representation	of	the	
data.

Benedetti,	Realpe-Gomez,	and	Perdomo-Ortiz.	Quantum-assisted	Helmholtz	machines:	A	quantum-classical	deep	
learning	framework	for	industrial	datasets	in	near-term	devices.	arXiv:1708.09784 (2017).



Experimental	implementation	of	the	QAHM

Experiments	using	1644	qubits (no	further	postprocessing!)

Benedetti,	Realpe-Gomez,	and	Perdomo-Ortiz.	Quantum-assisted	Helmholtz	machines:	A	quantum-classical	deep	
learning	framework	for	industrial	datasets	in	near-term	devices.	arXiv:1708.09784 (2017).

Max. CL = 43



Opportunities and challenges for quantum-assisted machine learning in near-term
quantum computers
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[Abstract here]

I. INTRODUCTION

With the advent of quantum computing technologies
nearing the era of commercialization and of quantum
supremacy [? ], it is a pressing task to think of potential
applications that might benefit from these devices. Ma-
chine learning stands out as a powerful statistical frame-
work that have allowed for the solution of problems where
deterministic algorithms are hard to develop. Examples
of such algorithms include image and voice recognition,
medical applications [Marc: mention here other selected
kick ass app for ML]. The development of quantum algo-
rithms that can assist or replace in it entirety the classi-
cal ML routine is an ongoing e↵ort that has attracted a
lot of interest in the scientific quantum information com-
munity. [cite all or most representative work here, e.g.,
Dorband et al :’D]

Although the focus has been on tasks such as classifi-
cation [cite Rebentrost, etc, etc], linear regression [cite],
Gaussian models [cite Fitzsimmons] [find other represen-
tative examples] corresponding to the most widely used
nowadays by machine learning practitioners, we do not
foresee these ones would be important for near-term uses
of quantum computers. The same reasons that make
these techniques so popular, e.g., their scalability and
algorithmic e�ciency in tackling huge datasets, makes
these techniques less appealing to become top candi-
dates as killer application in quantum machine learning
with devices in the range of 100-1000 qubits. In other
words, to reach interesting industrial scale applications
it would be required at least millions or even billions
of qubits before one make them competitive with classi-
cal e�cient algorithms. This is even under the assump-
tion of a quadratic or exponential speedup, which be-
comes a mute advantage when dealing with real-world
datasets and with the quantum devices to come in the
next decades nearing the 1000s of qubits regime. Only a
game changer, as elaborated later on this perspective, for
example by introducing hybrid algorithms might be able
to also make a dent in speeding up such routine tasks.

In our perspective here, we propose and emphasize two

⇤
Correspondence: alejandro.perdomoortiz@nasa.gov

approaches to maximize the possibilities of finding killer
applications on near-term quantum computers:

(i) Focus on problems that are currently hard and in-
tractable for the ML community: For example,
fully generative models, unsupervised and semi-
supervised learning as described in Sec. II.

(ii) Focus on hybrid quantum algorithms that can be
easily integrated in the intractable step of the ML
algorithmic pipeline, as described in Sec. IV.

Each one of these tasks have their own challenges and
significant work need to be done towards having experi-
mental implementations on available quantum hardware
(see e.g., [Benedetti1, Benedetti2]. Based on our past
experience in implementing quantum-assisted ML algo-
rithms on existing quantum hardware devices, we provide
here some insights into the main challenges ahead in de-
veloping such opportunities for QML. Although the focus
here is on implementations on quantum annealers, we at-
tempt to provide parallel insights in other computational
paradigms such as the gate model of quantum computa-
tion. The guidance on which problems to be tackled is
guided by our expertise in ML and by the advice from
experts in the ML community.
In Sec. II we present examples of domains in ML we

believe o↵er vlable opportunities for near-term quantum
computers. In Sec. III we present the challenges ahead of
such implementations in real hardware, while in Sec. IV
we provide some advice on potential solutions to over-
coming these challenges towards such implementations.
In Sec. ?? we summarize our work.

II. OPPORTUNITIES IN QML

a. Scenarios where labeled data is scarce: Our fo-
cus is on unsupervised learning techniques that can
extract salient spatiotemporal features from unlabeled
data. This is important because one of the central as-
pects of science is the discovery of unknown patterns;
nobody tells scientists which patterns they should look
for. This also serves as a pre-training phase that can sub-
stantially reduce the amount of labeled data needed for

- Opportunities: Emphasis	in	moving	from	popular	ML	to	not-so-popular	but	still	highly	value	
ML	applications.	Example:	From	discriminative	models	to	more	powerful	generative	models.	
Also,	classical	datasets	with	intrinsic	quantum	correlations.

- Challenges: Limited	qubit-qubit connectivity,	limited	precision,	intrinsic	control	errors,	digital	
representation,	classical-quantum	feedback	(in	case	of	hybrid).

- Proposed	directions:	Emphasis	on	hybrid	quantum-classical	algorithms.	New	approach	
capable	of	tackling	large	complex	datasets	in	machine	learning.

arXiv:1708.09757.	(2017).	To	appear	in	the	Quantum	Science	and	Technology	(QST)
invited	special	issue	on	“What	would	you	do	with	a	1000	qubit	device?”



https://usra-openhire.silkroad.com/epostings/index.cfm?fuseaction=app.jobInfo&version=1&jobid=629

Opportunities	at	NASA	Quantum	AI	Lab.	(NASA	QuAIL)	at	
different	levels:	internships,	postdoc,	or	Research	Scientist.	

For	details,	please	contact:
Eleanor	Rieffel: NASA	QuAIL Lead,	or,
Alejandro	Perdomo-Ortiz:	Quantum	Machine	Learning	Lead.	
eleanor.rieffel@nasa.gov,	alejandro.perdomoortiz@nasa.gov
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