

Opportunities and challenges in quantum-enhanced machine learning in near-term quantum computers

Alejandro Perdomo-Ortiz

Senior Research Scientist, Quantum AI Lab. at NASA Ames Research Center and at the University Space Research Association, USA

Honorary Senior Research Associate, Computer Science Dept., UCL, UK

Perdomo-Ortiz, Benedetti, Realpe-Gomez, and Biswas. **arXiv:1708.09757** (2017). To appear in the Quantum Science and Technology (QST) invited special issue on "What would you do with a 1000 qubit device?"

QUBITS D-wave User Group 2017

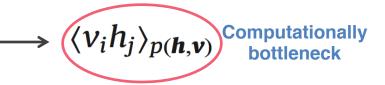
National Harbor, MD, September 28, 2017

D-Wave System Capability

1) As a discrete optimization solver:

Given $\{h_j, J_{ij}\}$, find $\{s_k = \pm 1\}$ that minimizes

$$\xi(s_1, ..., s_N) = \sum_{j=1}^N h_j s_j + \sum_{i,j \in E}^N J_{ij} s_i s_j$$

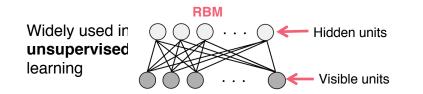

Potential NASA applications:

- planning
- scheduling
- fault diagnosis
- graph analysis
- communication networks, etc.

QUBO: Quadratic Unconstrained Binary Optimization (Ising model in physics jargon).

2) As a physical device to sample from Boltzmann distribution:

$$P_{Boltzman} \propto exp[-\xi(s_1,...,s_N)/T_{eff}]$$



Early work:

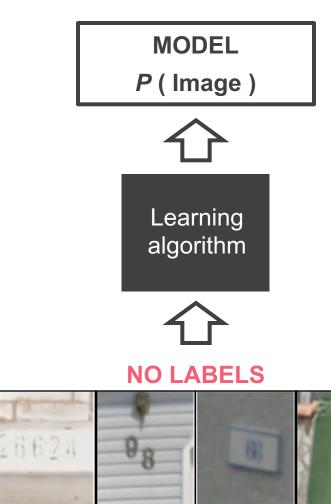
Bian et al. 2010. The Ising model: teaching an old problem new tricks.

Follow-up work:

Raymond et al. Global warming: Temperature estimation in annealers. Frontiers in ICT, 3, 23 (2016).

Our work: Benedetti et al. PRA 94, 022308 (2016)

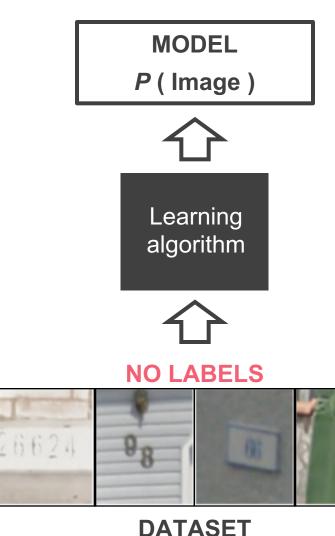
- We provide a robust algorithm to estimate the effective temperature of problem instances in quantum annealers.
- Algorithm uses the same samples that will be used for the estimation of the gradient


Potential NASA applications:

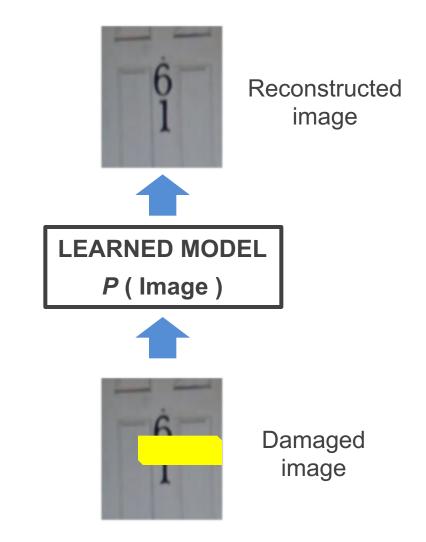
- machine leaning (e.g., training of deep-learning networks)

Unsupervised learning (generative models)

Learn the "best" model distribution that can generate the same kind of data

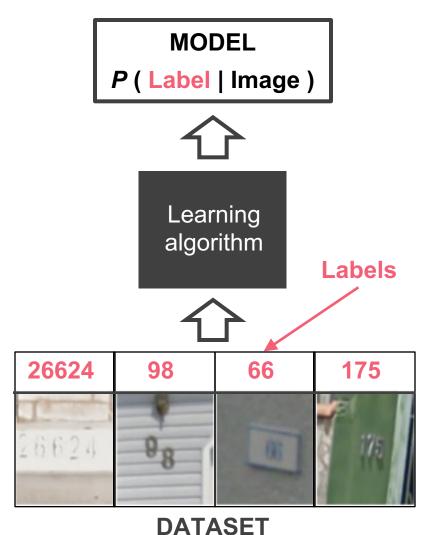


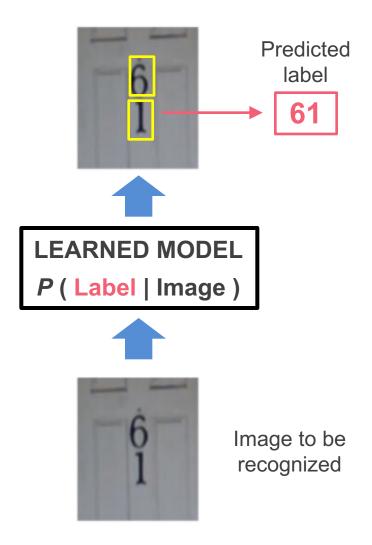
DATASET



Unsupervised learning (generative models)

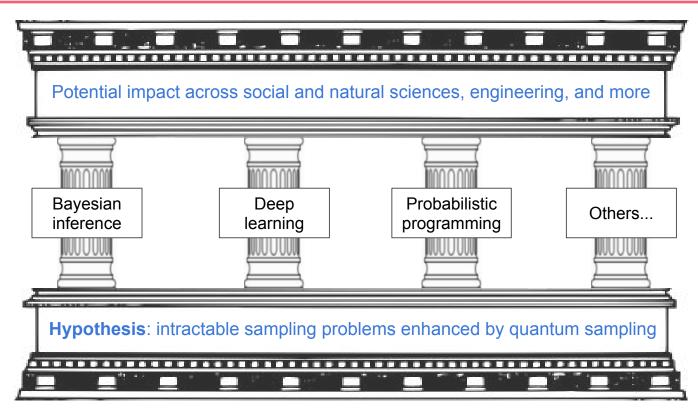
Learn the "best" model distribution that can generate the same kind of data

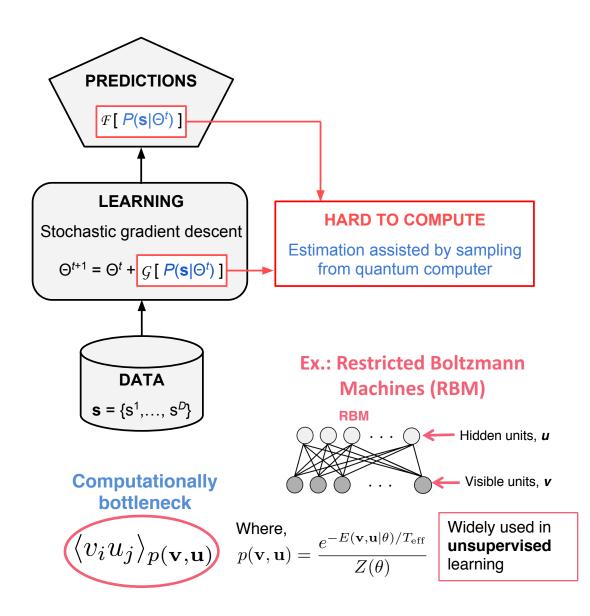

Example application: Image reconstruction



Supervised learning (discriminative models)

Learn the "best" model that can perform a specific task


Example application: Image recognition


State-of-the-art QML

- Most previous proposed work have highly optimized powerful classical counterparts (e.g., on discriminative/classification tasks)
- **Need for qRAM** (case of most gate-based proposal).
- Qubits represent visible units; issue for case of large datasets

Lesson 1: Move to intractable problems of interest to ML experts (e.g., generative models in unsupervised learning).

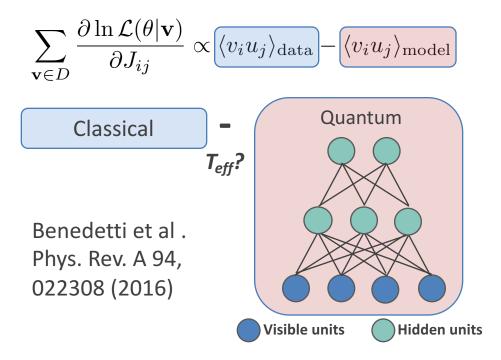
Lesson 2: Need for novel hybrid approaches.

Challenges solved:

Benedetti, et al. Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning. PRA 94, 022308 (2016).

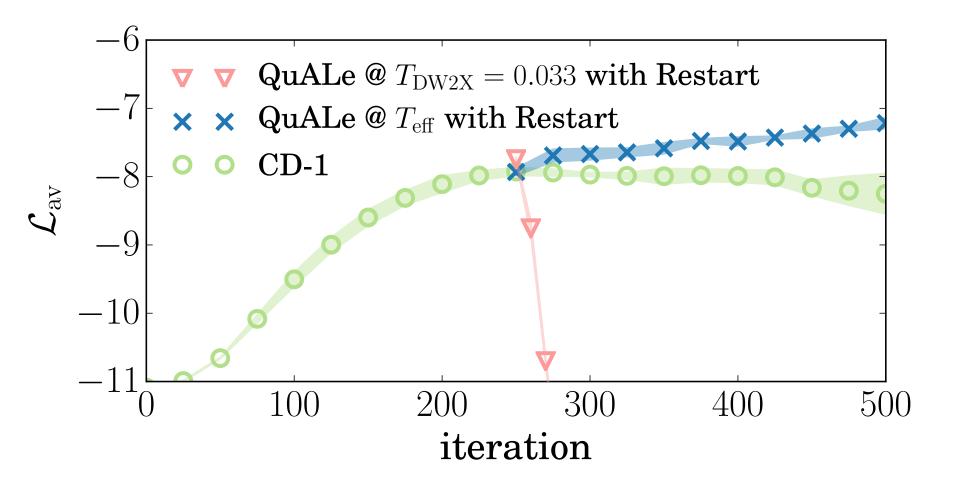
Benedetti, et al. Quantum-assisted learning of graphical models with arbitrary pairwise connectivity. arXiv:1609.02542 (2016).

Benedetti, et al. Quantum-assisted Helmholtz machines: A quantum-classical deep learning framework for industrial datasets in near-term devices. arXiv:1708.09784 (2017).


Perdomo-Ortiz, et al. **Opportunities and Challenges** in Quantum-Assisted Machine Learning in Near-term Quantum Computer. **arXiv:1708.09757**. (2017).

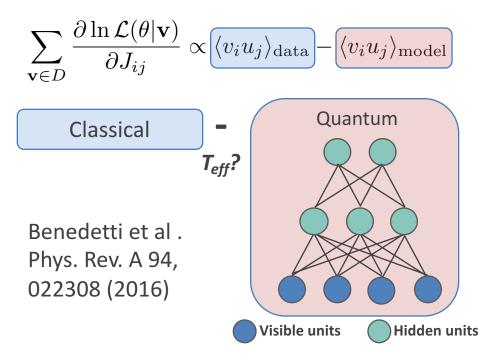
Challenges of the hybrid approach:

- Need to solve classical-quantum model mismatch


Training Method: Stochastic gradient ascent

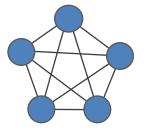
No significant progress in 2010-2015 for generative modeling and QA sampling.

Resolving model mismatch allows for restarting from classical preprocessing


Benedetti et al . Phys. Rev. A 94, 022308 (2016)

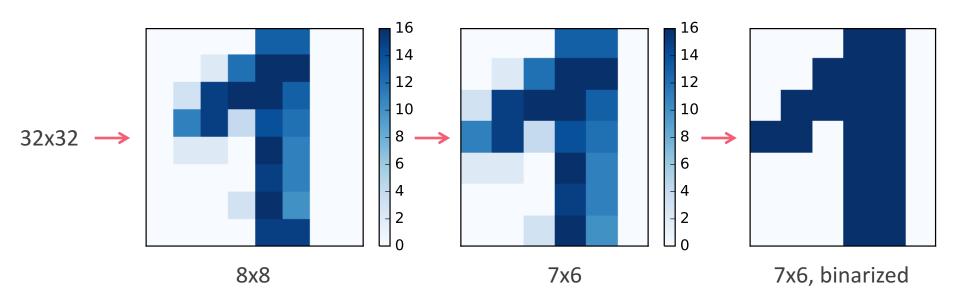
Challenges of the hybrid approach:

 Need to solve classical-quantum model mismatch


Training Method: Stochastic gradient ascent

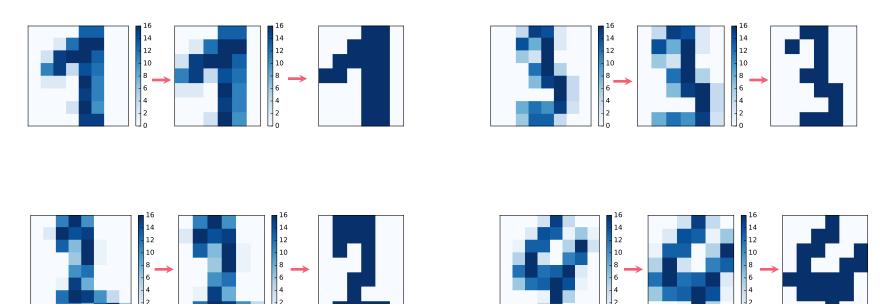
No significant progress in 2010-2015 for generative modeling and QA sampling.

 Robustness to noise, intrinsic control errors, and to deviations from sampling model (e.g., Boltzmann)


Fully visible models

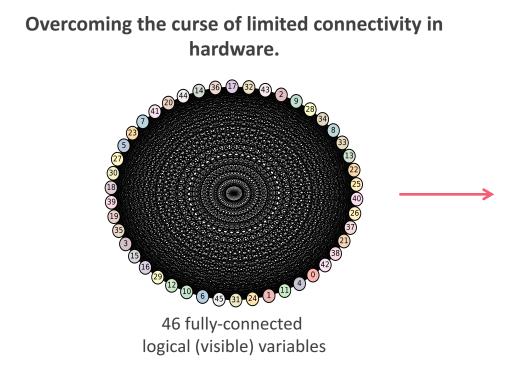
 Curse of limited connectivity – parameter setting Visible units

Benedetti et al. arXiv:1609.02542



OptDigits Datasets

Dataset: Optical Recognition of Handwritten Digits (OptDigits)

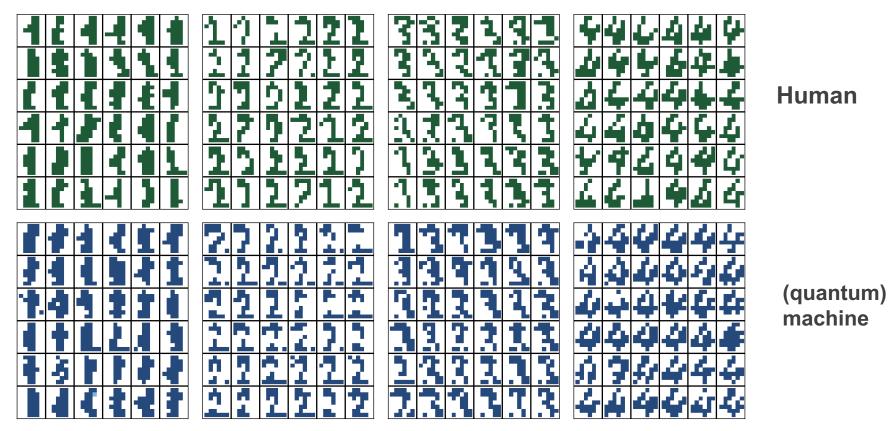


OptDigits Datasets

Dataset: Optical Recognition of Handwritten Digits (OptDigits)

42 for pixels + 4 to one-hot encode the class (only digits 1-4)

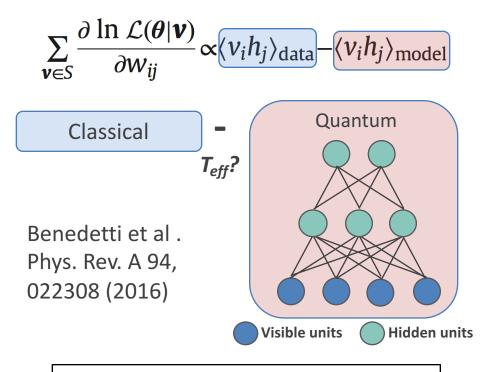
- Are the results from this training on 940 qubit experiment meaningful?
- Is the model capable of generating digits?


Min. CL =12, Max. CL = 28

4 1 1 30443	41-21 4 304 40 2-41	4) - 39 4) 27 30 - 36 2 - 3	4)-44 4)19 300 9 2-1	4 /34 30 /22 2 -10	6 4 131 2 2 - 4	4 0429 2-14	4 + 30 30 + 26 2 - 25	8 4 418 90 32 2 -13	30-35 4 223 30242 2 -30	30-24 4-20 2	38	40-16
15-45 5 1 31443 12-17	15-21 5 12 310,40 12-41	15-39 5 27 31436 12-3	15-44 5 19 3119 312-7	15-0 5¥34 31422 12-10	15-6 5 37 31 2 12-4	15-33 5 × 5 31 29 12-14	15-11 5 × 30 31 × 26 12-25	15-8 5 18 31132 12-13	15-35 223 311/42 12-15	15-24 20 31 12-16	31438 12-28	15-16
26-45 3 1 14443	26-21 3,416 14440 41	26-39 3 27 14-36 3	26-44 3 19 1449 1 1	26-0 3 ¥34 14¥22 22-10	26-6 3 × 37 14 3 22	26-33 3×5 14429 22-14	26-11 3 26 26-25	8 3 -18 32 26-13	35 3-723 42 26	24 24 3 (720 24 26-16	3 38 26-28	3 16
43-45 40,11 222443 16-17	43-21 4016 22040 16-41	43-39 40 <mark>27</mark> 221/36 16	43-44 40,19 22,99 16-7	43-0 40 3 4 22222 16-10	43-6 40737 16-43	43-33 4045 29 16-14	43-11 40 26 16-25	43-8 4018 32 16-13	43-35 40 <mark>-23</mark> 42 16-16	43-28 40+20 24 16 16	38	38 16
8-45 18-1 34	8-21 18 34 21-41	8-39 1827 34436 13	8-44 18,19 34,99 13-7	8-0 18734 34422 13-10	8-6 1837 3411 13-43	8-33 1875 3429 13-14	8-11 18/25 34/26 13-25	8 8 18/18 34432 13 13	8-35 1823 34442 13-38	8-28 1820 34424 13	38 28	
45 33/1 25 29-17	33-21 33,33 25 29-41	33-39 27 25436 29	33-44 11,19 25,99 29-1	33-0 11 25422 29-10	33-6 11,437 25,411 29-43	33 33 11×5 25×29 29-14	33-11 11/25 25/38 29-25	33-28 11218 25532 29-13	33-35 11223 25242 29-38	24-28 11,520 24,24 29	38 28	
45 45 1 1 39 41-17	45-21 0,00 39 41 41	31-39 01:21 39436 36-11	37-44 0)19 2399 /38-7	37-0 0,438 230,22 38-10	37-6 37/37 23/11 38-43	20-33 31/5 23 38-14	20-23 23,20 23,38 38	20-28 23 32 38-13	20-35 23,23 42 38-38	20-28 23+20 24 38	38 38–28	
9-45 27/1 19/19	9-21 27/41 19 41 41	9-39 21/27 19436 21-17	9-44 (42)19 (42)19 (42)19 (19)29 (21-7	6-0 42,439 10,422 11-10	6 6 42237 10211 11-43	6 42-5 10 14	6 42	6 -28 42 35432 32-13	6-35 42/223 35242 32-38	28 20 35-24	28	
45 1771 19 36-17	21 21 17 741 21 36	32-39 (11):27 (39:436 (36-17	32-44 19 3949 10-7	32-0 35¥39 39¥22 10-10	32-6 35 4 37 11	32 35-5 24 14	32 35 24	32-28 35 24432 13	35 35/23 24442 38	28 20 24 24	28	
45 1 19 17	41 21	39 24-27 36 39	35-44 24,19 20,9 28-1	35-0 24+20 20+22 28-10	35-6 24,437 20,11 26-17	35-36 24 5 20 24 28-14	35 24 24 20 28	35-28 24/28 20:132 28-13	35-35 2423 20242 28-38	28 24/20 20/24 28	28 28	
45 1 19 17	41 41 21 21	36 41-27 27/36 21	36-44 41 21 21-7	36 41-20 27 21-10	36-6 41¥37 27¥11 21-17	36 36 41 21 24 21	36 41-24 21 21	36 41128 27732 21-13	36-35 41/23 21/42 21-38			
1 1 45 19	17 1 45 19	17 1 45 19	1 1 45 6	17 1 45 6	17 - 245 - 6	17 1 45-	17	17	17-2454			

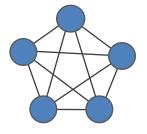
940 physical qubits

Human or (quantum) machine? (Turing test)


Dataset: Optical Recognition of Handwritten Digits (OptDigits)

Results from experiments using 940 qubits, without post-processing. The hardware-embedded model represents a 46 node fully connected graph.

Challenges of the hybrid approach:


 Need to solve classical-quantum model mismatch

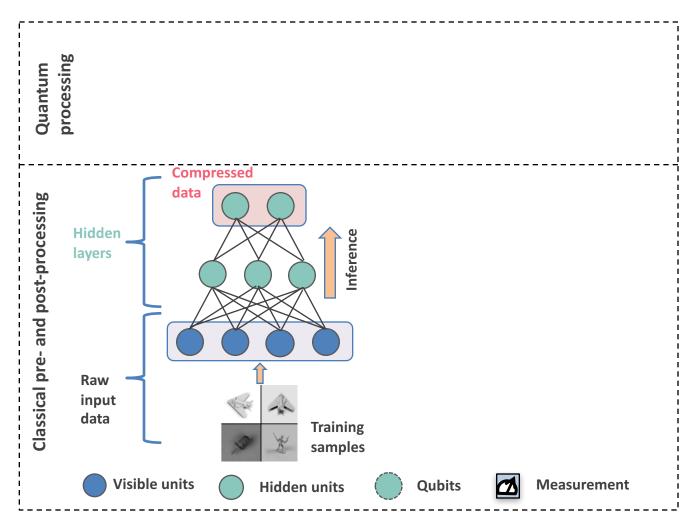
Training Method: Stochastic gradient ascent

No progress in five years since QA sampling was proposed as a promissing appplication. Robustness to noise, Fu intrinsic control errors, and to deviations from sampling model (e.g., Boltzmann)

Fully visible models

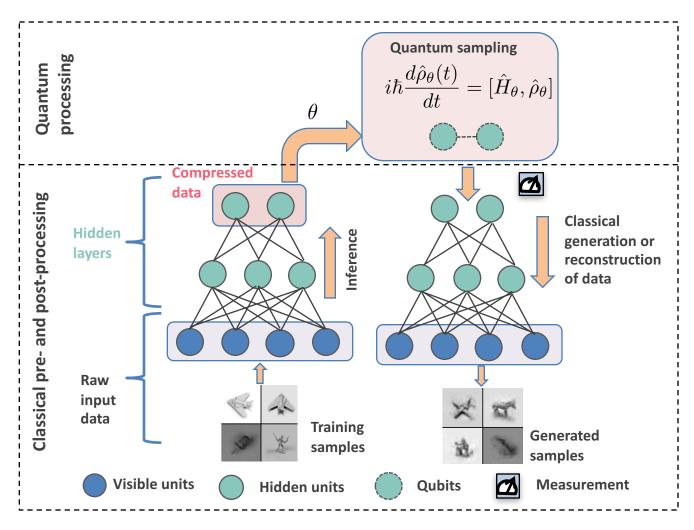
 Curse of limited connectivity – parameter setting

Visible units

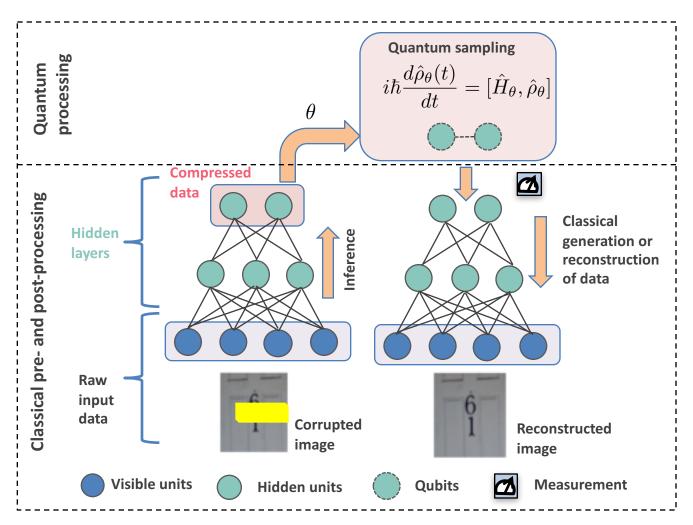

Benedetti et al. arXiv:1609.02542

How about large complex datasets with continuous variables? All previous fail to do that (fully quantum and hybrid here)

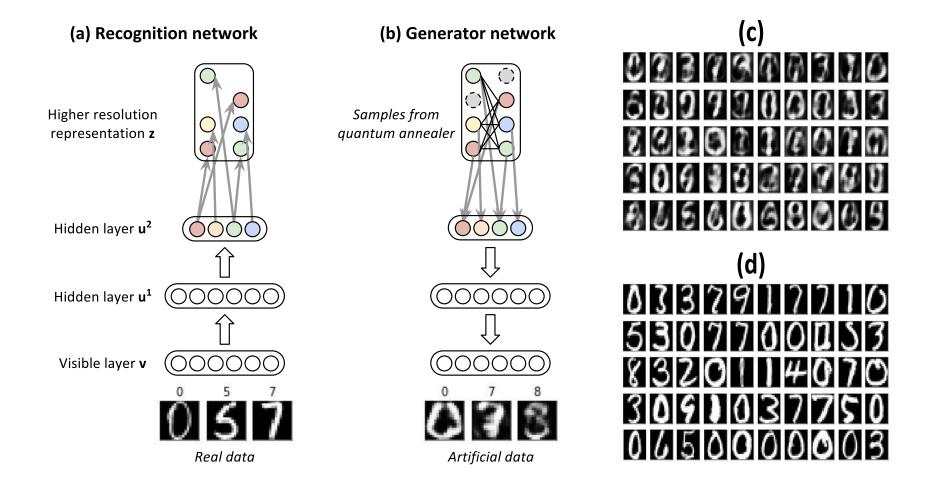
Perspective on quantum-enhanced machine learning


• New hybrid proposal that works directly on a low-dimensional representation of the data.

Perspective on quantum-enhanced machine learning


• New hybrid proposal that works directly on a low-dimensional representation of the data.

Perspective on quantum-enhanced machine learning


• New hybrid proposal that works directly on a low-dimensional representation of the data.

Benedetti, Realpe-Gomez, and Perdomo-Ortiz. Quantum-assisted Helmholtz machines: A quantum-classical deep learning framework for industrial datasets in near-term devices. **arXiv:1708.09784** (2017).

Experimental implementation of the QAHM

Experiments using 1644 qubits (no further postprocessing!)

Max. CL = 43

Benedetti, Realpe-Gomez, and Perdomo-Ortiz. Quantum-assisted Helmholtz machines: A quantum-classical deep learning framework for industrial datasets in near-term devices. **arXiv:1708.09784** (2017).

Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers

Alejandro Perdomo-Ortiz,^{1, 2, 3, *} Marcello Benedetti,^{1, 3} John Realpe-Gómez,^{1, 4, 5} and Rupak Biswas⁶

- **Opportunities:** Emphasis in moving from popular ML to not-so-popular but still highly value ML applications. Example: From discriminative models to more powerful generative models. Also, classical datasets with intrinsic quantum correlations.
- **Challenges:** Limited qubit-qubit connectivity, limited precision, intrinsic control errors, digital representation, classical-quantum feedback (in case of hybrid).
- **Proposed directions:** Emphasis on hybrid quantum-classical algorithms. New approach capable of tackling large complex datasets in machine learning.

arXiv:1708.09757. (2017). To appear in the Quantum Science and Technology (QST) invited special issue on "What would you do with a 1000 qubit device?"

Job advertisement

Opportunities at NASA Quantum AI Lab. (NASA QuAIL) at different levels: internships, postdoc, or Research Scientist.

For details, please contact: **Eleanor Rieffel:** NASA QuAIL Lead, or, **Alejandro Perdomo-Ortiz:** Quantum Machine Learning Lead. eleanor.rieffel@nasa.gov, alejandro.perdomoortiz@nasa.gov

https://usra-openhire.silkroad.com/epostings/index.cfm?fuseaction=app.jobInfo&version=1&jobid=629

Support slides