
CONTACT

Corporate Headquarters
3033 Beta Ave
Burnaby, BC V5G 4M9
Canada
Tel. 604-630-1428

US O�ice
2650 E Bayshore Rd
Palo Alto, CA 94303

Email: info@dwavesys.com

www.dwavesys.com

Overview

This guide provides a gentle introduction to Ocean programs for begin-
ners new to D-Wave’s Ocean SDK. Here you will find the building blocks
and basic components required in an Ocean program in order to suc-
cessfully run problems using D-Wave’s hardware and so�ware tools.

Ocean Programs for Beginners

WHITEPAPER

2021-09-28

14-1043A-B
D-Wave Whitepaper Series

Notice and Disclaimer
D-Wave Systems Inc. (“D-Wave”) reserves its intellectual property rights in and to this document, any doc-
uments referenced herein, and its proprietary technology, including copyright, trademark rights, industrial
design rights, and patent rights. D-Wave trademarks used herein include D-WAVE®, Leap™ quantum cloud
service, Ocean™, Advantage™ quantum system, D-Wave 2000Q™, D-Wave 2X™, and the D-Wave logo (the “D-
Wave Marks”). Other marks used in this document are the property of their respective owners. D-Wave does
not grant any license, assignment, or other grant of interest in or to the copyright of this document or any
referenced documents, the D-Wave Marks, any other marks used in this document, or any other intellectual
property rights used or referred to herein, except as D-Wave may expressly provide in a written agreement.

Copyright© D-Wave Systems Inc. Ocean Programs for Beginners i

Contents
1 Introduction 1

2 Core Components 1
2.1 Setting Up The Problem . 1
2.2 Building a Quadratic Model . 2
2.3 Interacting with a Sampler or Solver . 3
2.4 Calling a Sampler . 4
2.5 Examining Results from a Sampler . 4

3 A More Complex Example 6

4 Using Matrices for Binary Quadratic Models 8

5 Further Example Programs 9

References 10

Copyright© D-Wave Systems Inc. Ocean Programs for Beginners ii

1 Introduction
D-Wave’s Ocean software development kit (SDK) allows users to interact with the D-Wave quan-
tum processing units (QPUs) and hybrid solvers through Python programs.

The purpose of this guide is to step new Ocean users through the basic components of an Ocean
program. Before working through this guide, please review our introduction to binary quadratic
models (BQMs) [1].

A user interacts with D-Wave solvers by formulating a quadratic model (QM) for their problem,
writing a Python program that uses the Ocean SDK, running that Python program, and reviewing
the results returned. The Python program introduces a QM and submits it to the selected solver to
find the minimum energy value for that model. For example, if the solver is the QPU, the Ocean
SDK provides the proper inputs to the physical QPU so that the energy landscape matches the
BQM provided.

2 Core Components
An Ocean program has several core components. First, we must build a quadratic model (QM)
that will be provided to the solver. This can be done in a number of ways, such as either quadratic
unconstrained binary optimization (QUBO) or Ising form. Second, we need to select a sampler
to run our problem and provide results. In this section we will step you through each of these
components and demonstrate using the maximum cut problem from D-Wave’s collection of code
examples [2].

2.1 Setting Up The Problem
For this guide, we will work with a simple example called the maximum cut problem. In the maxi-
mum cut problem our objective is to maximize the number of cut edges in a graph. In other words,
we want to divide the set of nodes in the graph into two subsets so that we have as many edges as
possible that go between the two sets. In the image below, the two sets are denoted using blue and
white nodes and the cut edges are represented with dashed lines. For this example, the maximum
cut size is 5.

Copyright© D-Wave Systems Inc. Ocean Programs for Beginners 1

We can represent this problem as a binary quadratic model (BQM) with the objective:

min
∑

(i , j)∈E

�

−xi − x j + 2xi x j

�

For the full details on how this formulation is derived, see the full description in the Collection
of Code Examples [2]. This particular problem consists only of one single objective and no con-
straints.

2.2 Building a Quadratic Model
We need to define a quadratic model (QM) that represents our problem. To learn about how to
formulate a QM for your problem as a QUBO or Ising model, check out our “Learning to For-
mulate Problems” guide [1]. That guide will take us through the steps of how to formulate your
problem as a QM and how to represent it in mathematical and matrix form.

Once we have our QM, we need to build it in our Python program.

Binary Quadratic Models: The simplest way to build a binary quadratic model (BQM) is using
Ocean’s symbolic variables. For each mathematical variable in your BQM, we define a symbolic
binary variable using Ocean.

x = {n: Binary(n) for n in G.nodes}

This defines a Python dictionary in which we have a symbolic binary variable defined for each node
in our graph. In this dictionary, each key is a node in the graph while the value is the corresponding
symbolic binary variable.

Now that we have binary variables that we can use in our Python program, we can build our BQM
using these binary variables. Recall that our BQM is represented by the following mathematical
expression.

min
∑

(i , j)∈E

�

−xi − x j + 2xi x j

�

Using our symbolic binary variables, we define a QM that matches this mathematical expression.

bqm = sum(-x[i]-x[j]+2*x[i]*x[j] for i,j in G.edges)

Once the QM is defined, it is stored as a BinaryQuadraticModel object. This object stores the
linear and quadratic coefficients of the mathematical expression, any constant term or offset, and
the type of variables used to build the model. In this case, printing out the object bqm that we have
constructed reveals the following.

BinaryQuadraticModel({1: -2.0, 2: -2.0, 3: -3.0, 4: -3.0, 5: -2.0},
{(2, 1): 2.0, (3, 1): 2.0, (4, 2): 2.0, (4, 3): 2.0, (5, 3): 2.0, (5, 4): 2.0},
0.0, ’BINARY’)

For the 5-node example graph, simplifying the mathematical expression for our objective produces
linear and quadratic terms that match the constructed BinaryQuadraticModel object.

Copyright© D-Wave Systems Inc. Ocean Programs for Beginners 2

Constrained Quadratic Models: A constrained quadratic model (CQM) allows us to explicitly set
an objective and constraints to model our problem. We begin in the same way as the BQM example
by defining our variables. For the maximum cut problem, these are all binary.

x = {n: Binary(n) for n in G.nodes}

Next, we initialize our CQM object and set the objective for our CQM to represent the minimiza-
tion problem that we are looking to solve.

Initialize a CQM object
cqm = ConstrainedQuadraticModel()

Set an objective function for the CQM
cqm.set_objective(sum(-x[i]-x[j]+2*x[i]*x[j] for i,j in G.edges))

2.3 Interacting with a Sampler or Solver
To find the minimum energy state for a QM (the assignment of variable values that gives us the
minimum energy value for our QM), the Ocean SDK provides samplers and solvers. A solver is
a resource that runs a problem. Samplers are processes that run a problem many times to obtain
a collection of samples, each of which is a possible solution to our problem. For convenience, we
will generally refer to Ocean’s samplers as a whole, to include solvers as well.

The Ocean SDK provides a variety of different samplers that we can use to examine our prob-
lem. These range from the D-Wave QPU (DWaveSampler) to classical algorithms like tabu search
(TabuSampler) and even hybrid tools (LeapHybridSampler). More information on samplers can
be found in the full Ocean documentation [3].

Defining a Sampler. To define a sampler, we need to understand which package it belongs to
in the Ocean SDK. In Figure 1 is a list of some commonly used samplers for beginners. Each
sampler obtains samples in a different way and can be useful at different stages of your application
development.

To define a sampler for our program, we first import the package that contains the sampler using
the same syntax as we would for any other Python package import. Then we can instantiate our
sampler object in our program so that it is ready to be called.

Example. To use the D-Wave QPU, we might use the following lines of code.

Import the packages required
from dwave.system.samplers import DWaveSampler, EmbeddingComposite

Define the sampler
sampler = EmbeddingComposite(DWaveSampler())

In these lines we see a few different things taking place.

Copyright© D-Wave Systems Inc. Ocean Programs for Beginners 3

Sampler Description Ocean Package Useful for:
DWaveSampler D-Wave QPU dwave-system Running problems directly on

the QPU
ExactSolver Considers all possible an-

swers to find the optimal so-
lution

dimod Running very small problems
classically (<10 variables)

SimulatedAnnealingSampler Classical algorithm for sim-
ulated annealing

dwave-neal Running medium-sized prob-
lems classically

LeapHybridSampler Quantum-Classical hybrid
sampler

dwave-system Running large problems across
a portfolio of quantum and clas-
sical hardware

Figure 1: List of commonly used Ocean samplers

First, DWaveSampler tells the system that we want to use the D-Wave quantum computer. Wrapped
around our call to DWaveSampler we see EmbeddingComposite. This tool lets the Ocean SDK
find the best way to map, or embed, our logical problem (our QM) onto the physical QPU. It de-
cides which qubits to map our variables onto and will unembed solutions so that they are returned
to us in terms of our variables.

2.4 Calling a Sampler
Once we have established our sampler in our program, we can call it for our QM. Each type of QM
model has its own method for interacting with the sampler, whether it be QUBO, BinaryQuadr-
ticModel, or any other QM. We call the sampler to sample our QM using one of Ocean’s sample
functions, depending on what type of QM we are using. For example, the code snippet below
demonstrates how we can sample a BinaryQuadraticModel object named bqm using the QPU.

Define the sampler
sampler = EmbeddingComposite(DWaveSampler())

Sample the BQM and store the results in the SampleSet object
sampleset = sampler.sample(bqm, num_reads = 100)

Note that each sampler has its own set of parameters, or additional settings, in the sample methods
available. In the previous code snippet, the parameter num_reads is used to run the BQM 100
times on the QPU. A list of the properties and parameters specific to the QPU (DWaveSampler)
is available here [4]. Beginners should pay particular attention to the chainstrength and num_-
reads (number of reads) parameters, as discussed in the documentation.

2.5 Examining Results from a Sampler
After we have sampled our QM, the sampler returns a SampleSet object. This object contains all
of the samples returned along with their corresponding energy value, number of occurrences, and

Copyright© D-Wave Systems Inc. Ocean Programs for Beginners 4

more. The additional information varies depending on which sampler is used. As users get more
comfortable with the Ocean SDK and the variety of samplers available, it is often useful to take
some time to explore the wealth of information provided in the SampleSet object.

Some of the key properties and methods of a SampleSet that we access are the following.

SampleSet.record: The full set of samples.

Each line shows a sample (solution) that was returned, along with the corresponding energy value,
number of occurrences, and additional information like chain break fraction (QPU samplers),
feasibility (CQM solver), or other sampler-specific information.

Example from a QPU sampler:

[([0, 1, 1, 0, 0], -5., 26, 0.)
([0, 1, 1, 0, 1], -5., 33, 0.)
([1, 0, 0, 1, 0], -5., 24, 0.)
([1, 0, 0, 1, 1], -5., 17, 0.)]

SampleSet.first: The sample with the lowest energy.

Example from a QPU sampler:

Sample(sample={1: 0, 2: 1, 3: 1, 4: 0, 5: 0}, energy=-5.0, num_occurrences=26,
chain_break_fraction=0.0)

Copyright© D-Wave Systems Inc. Ocean Programs for Beginners 5

SampleSet.data: The complete information about the solutions and sampler.

Example from a QPU sampler:

<bound method SampleSet.data of
SampleSet(rec.array([

([0, 1, 1, 0, 0], -5., 26, 0.),
([0, 1, 1, 0, 1], -5., 33, 0.),
([1, 0, 0, 1, 0], -5., 24, 0.),
([1, 0, 0, 1, 1], -5., 17, 0.)],

dtype=[(’sample’, ’i1’, (5,)),
(’energy’, ’<f8’),
(’num_occurrences’, ’<i8’),
(’chain_break_fraction’, ’<f8’)]),

[1, 2, 3, 4, 5],
{’timing’:

{’qpu_sampling_time’: 2389,
’qpu_anneal_time_per_sample’: 20,
’qpu_readout_time_per_sample’: 198,
’qpu_access_time’: 13078,
’qpu_access_overhead_time’: 4062,
’qpu_programming_time’: 10689,
’qpu_delay_time_per_sample’: 21,
’total_post_processing_time’: 426,
’post_processing_overhead_time’: 426,
’total_real_time’: 13078,
’run_time_chip’: 2389,
’anneal_time_per_run’: 20,
’readout_time_per_run’: 198},
’problem_id’: ’9925c084-f2e6-4124-a361-11607a92439c’},
’BINARY’)>

3 A More Complex Example
Similar to the maximum cut problem is another problem from graph theory called the graph par-
titioning problem. In this problem, our objective is to minimize the number of cut edges and our
constraint is that both subsets of nodes must have equal size. Mathematically, this can be expressed
as the following.

Objective: min
∑

(i , j)∈E

�

xi + x j − 2xi x j

�

Constraint:
∑

v∈G xv = |G|/2

Binary Quadratic Model: We will again begin by defining a binary variable for each node in our
graph.

x = {n: Binary(n) for n in G.nodes}

Copyright© D-Wave Systems Inc. Ocean Programs for Beginners 6

We begin the construction of our QM by building a BinaryQuadraticModel object that consists
of our objective expression.

bqm = sum(-x[i]-x[j]+2*x[i]*x[j] for i,j in G.edges)

Next, we add in our constraint using the add_linear_equality_constraint function from
Ocean. To use this function we must have a constraint of the form (

∑

i ai xi) +C = 0. To map
our mathematical constraint to this form, we move the constant term |G|/2 to the left-hand side
of the equation. When using this function, the first parameter is a list of tuples representing (vari-
able, coefficient), or (xi ,ai). The constant parameter is the constant term in the equation, and
the lagrange_multiplier parameter provides a weighting coefficient to effectively balance the
objective and constraint for the problem. Note that for this constraint to be satisfied, we must have
an even number of nodes in the graph.

bqm.add_linear_equality_constraint([(n, 1) for n in G.nodes],
constant = -G.number_of_nodes()/2,
lagrange_multiplier = 1)

Now the BinaryQuadraticModel called bqm completely models our optimization problem and
can be sent over to one of the available samplers.

Constrained Quadratic Model: As before, we define a binary variable for each node in our graph.

x = {n: Binary(n) for n in G.nodes}

To build the CQM for the graph partitioning problem, we initialize our ConstrainedQuadraticModel
object, set our objective, and add in the constraint. This is shown in the code snippet below.

Import the required package
from dwave.system import LeapHybridCQMSampler

Initialize the CQM
cqm = ConstrainedQuadraticModel()

Set the objective
cqm.set_objective(sum(-x[i]-x[j]+2*x[i]*x[j] for i,j in G.edges))

Add a constraint
cqm.add_constraint(sum(x[i] for i in G.nodes) == (G.number_of_nodes()/2),

label=’partition-size’)

Copyright© D-Wave Systems Inc. Ocean Programs for Beginners 7

Note that a label is provided for the constraint. This allows the SampleSet returned from the sam-
pler to check whether or not each individual constraint is satisfied. For example, in the following
code snippet we define our sampler to be LeapHybridCQMSampler, sample the CQM object, and
print out the SampleSet object returned.

Define the sampler
sampler = LeapHybridCQMSampler()

Sample the CQM object
sampleset = sampler.sample_cqm(cqm)

Print the results
print(sampleset.first)

This displays for the user the following SampleSet.

Sample(sample={1: 0.0, 2: 1.0, 3: 1.0, 4: 0.0, 5: 0.0, 6: 1.0}, energy=-6.0,
num_occurrences=1, is_feasible=True, is_satisfied=array([True]))

First we see the sample with binary variable assignments, followed by the energy and number
of occurrences. Lastly, we see two fields unique to constrained quadratic models: is_feasible:
True if all constraints are satisfied, and is_satisfied: an array with an entry for each constraint
indicating True if the constraint is satisfied.

4 Using Matrices for Binary Quadratic Models
An alternative to building binary quadratic models symbolically is to build them using a matrix
representation. A matrix representation of a BQM contains linear coefficients along the diagonal
and quadratic coefficients on the off-diagonal. An easy way to think of a BQM in matrix form is to
imagine variable names across the rows and columns of our matrix. Using Ocean, we can encode
this matrix in a variety of ways such as with a Python dictionary or with a NumPy array. Below
we show converting a BQM matrix to a Python dictionary.

x1 x2
x1 0 2
x2 0 1

is equivalent to {(x1, x2) : 2, (x2, x2) : 1} .

When we enter our BQM matrix into a dictionary, we generally only include the non-zero entries,
which allows us to save space and run larger problems more efficiently.

Copyright© D-Wave Systems Inc. Ocean Programs for Beginners 8

Maximum Cut Example. In the maximum cut example, the BQM equation for a graph with edge
set E was determined to be:

min
∑

(i , j)∈E

(−xi − x j + 2xi x j).

In maximum_cut.py, the Python dictionary for our matrix is built in the following code snippet.

from collections import defaultdict

Initialize our Q matrix
Q = defaultdict(int)

Update Q matrix for every edge in the graph
for u, v in G.edges:

Q[(u,u)]+= -1
Q[(v,v)]+= -1
Q[(u,v)]+= 2

In this example, we use defaultdict(int) to initialize the dictionary Q. This allows us to create
new dictionary elements that are initialized with the value 0 as they are added to the dictionary
[5].

5 Further Example Programs
For some simple Ocean program examples, check out our Collection of Code Examples [2]. These
examples can be fully explored through our Leap cloud platform and with our integrated developer
environment (IDE), available at cloud.dwavesys.com/leap.

Copyright© D-Wave Systems Inc. Ocean Programs for Beginners 9

cloud.dwavesys.com/leap

References
1 Learn to formulate problems, https://www.dwavesys.com/media/bu0lh5ee/bqm_dev_guide.pdf (2020).

2 Collection of code examples, https://github.com/dwave-examples (2020).

3 Ocean documentation, https://docs.ocean.dwavesys.com (2020).

4 D-Wave system documentation, https://docs.dwavesys.com/docs/latest/c_solver_parameters.html (2020).

5 Python documentation: collections, https://docs.python.org/3/library/collections.html (2020).

Copyright© D-Wave Systems Inc. Ocean Programs for Beginners 10

https://www.dwavesys.com/media/bu0lh5ee/bqm_dev_guide.pdf
https://github.com/dwave-examples
https://docs.ocean.dwavesys.com
https://docs.dwavesys.com/docs/latest/c_solver_parameters.html
https://docs.python.org/3/library/collections.html

	Introduction
	Core Components
	Setting Up The Problem
	Building a Quadratic Model
	Interacting with a Sampler or Solver
	Calling a Sampler
	Examining Results from a Sampler

	A More Complex Example
	Using Matrices for Binary Quadratic Models
	Further Example Programs
	References

