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Free energy

https://doi.org/10.1073/pnas.1621348114

Drug discovery  

Novel Materials   
Machine Learning  
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Free Energy of Binding

• Binding affinity is defined as free energy change associated 
with binding of a drug to a target protein

Drug A Drug B

𝐹" 𝐹#

• Δ𝐹 = 𝐹# − 𝐹" indicates how potent drug B is compared to drug A



• Expression for free energy

𝐹 = −𝑘𝑇𝑙𝑛 𝑍

𝑍 =,
-

𝑒/0(-)/45

• Computing partition function involves summing over all the 
states 𝑥 a system can adopt

• Not possible to enumerate all  the states

• Only few states contribute significantly to the sum
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Free Energy Computation 

Phase Space



• Ratio of partition functions can be expressed as a 
Boltzmann average 

𝛽 F9 − F: = − ln
𝑍"
𝑍#

= < 𝑀 >#@ABCDEFF EGHIEJH

• This requires generation of samples according to Boltzmann
distribution

• Different variants of MCMC is used for sampling 

• Sampling from a rugged energy landscape is a challenge
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Free Energy as Ensemble Average 
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Research questions

• Can we use the D-Wave for computing ensemble averages?

• Does it offer any advantages over classical techniques?
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Thermodynamic Integration 

𝜆

𝜕𝐻
𝜕𝜆

• Free energy difference between states A and B can be computed along a path of 
transformation 

• Free energy difference computed from ensemble average

State A

State B

𝝀
Δ𝐹 = 𝐹# − 𝐹"

𝐻 λ = 1 − 𝜆 𝐻" + 𝜆𝐻#

Δ𝐹 = R
"

# 𝜕𝐻
𝜕𝜆 𝑑𝜆

Drug A Drug B

𝐹" 𝐹#

𝜆" 𝜆#
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Boltzmann Sampling  

• 𝐻 𝑠 = 𝐴 𝑠 𝐻V + 𝐵 𝑠 𝐻X

where 𝐻V = −∑Z 𝜎Z
- is the driver(mixing) Hamiltonian and 

𝐻X = ∑Z\ 𝐽Z\𝜎ZC𝜎\C + ∑Z ℎZ𝜎ZC is the problem Hamiltonian

• Towards the end of anneal, when transverse field diminishes, 
dynamics slows down and system essentially freezes

• It is conjectured that at the “freeze-out” point, device returns 
Boltzmann distributed samples at an instance-dependent 
inverse-temperature 𝛽H__ different from the hardware 
temperature 

• If ”freeze-out” point is earlier in the anneal, such promises 
cannot be made

Amin et. al, https://arxiv.org/pdf/1503.04216.pdf



• D-Wave samples from an unknown device temperature 𝛽H__ different from the 
physical temperature

• Close examination of the samples must be done to ensure that samples
are indeed Boltzmann distributed

• A cheap post-processing which incurs small overhead sounds promising

• In situations where post-processing succeeds, one doesn’t need to obtain 𝛽H__

• Post-processing brings samples close to the target distribution 

• Such an approach can be more efficient when distribution exhibits well-separated 
modes 

Global warming: Temperature estimation in annealers, Raymond et. al
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Boltzmann Sampling  



• We ran our simulations on USRA 2000Q D-Wave machine

• Post-processing was switched on 

• 𝛽 = 4.0 was set as the post-processing temperature for all the runs

• D-Wave heuristic solver was used to find the embedding for all models except the 
Chimera graph based model

• Spin-reversal transforms were used 

• Exact values and classical sampling techniques  were used for comparisons
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Simulation details
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Models studied 

• 1D Ising spin model

• 2D Ising square-lattice spin model
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1D Ising model  

• Integration path along a path where interaction strength 𝐽 changes

𝐸 𝑥 = ,
Z,\

𝐽Z\𝑥Z𝑥\

• Integrand is simply the energy in this case. 𝑁 = 48 spins

Note: Post-processing temperature was set to 𝛽 = 4.0

𝐾 = 𝛽𝐽
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2D Ising square lattice 

𝐾∗ = 0.4407

𝑁 = 12x12

𝐾∗ = 0.4407

𝐾 = 𝛽𝐽
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Boltzmann Machines 

𝐻 = (1 − 𝜆)𝐻IH_ + 𝜆𝐻BEIJHB• Reference graph is a “bias-only” model
• Calculations done on graph size 2𝑁
• Annealed Importance Sampling (AIS) was used for comparisons
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Protein-ligand Model 

• We use diamond encoding to model the 
protein-ligand Hamiltonian in the QUBO form

• An improved encoding scheme was devised that uses 
fewer variables compared to the original 
implementation 

• Self-avoiding walk of the chain is modeled using 
penalty terms in the Hamiltonian

• We study a six amino acid protein with a ligand
fixed at a lattice position. Ligand has the same interaction
with all the acids.

Construction of Energy Functions for Lattice Heteropolymer Models: A Case Study in
Constraint Satisfaction Programming and Adiabatic Quantum Optimization, Babbush et. al
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Protein-ligand Binding Free Energy  

• Along the integration path, interaction strength of the drug with the protein is 
gradually increased 

• ~37 binary variables in the Hamiltonian 
• Embedding uses relatively long qubit chains
• The current precision limit on the device leads to under-specification of the 

Hamiltonian

𝛽Δ𝐹H-ElB = −2.43
𝛽Δ𝐹lEAl = −2.36 ± 0.48
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Conclusions  

• We examined the feasibility of using Quantum annealing based sampling
for free energy calculations

• Our results indicate comparable accuracy compared to the classical samplers 

• We would like to investigate cases where QA can possibly show considerable 
improvements over a purely classical scheme 
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