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REQUIRED DEFINITION: USEFUL QUANTUM 
SUPREMACY
Quantum supremacy: proof that quantum computing can perform a
particular calculation that’s beyond the reach of any conventional
computer. For the universal quantum computer and certain
problems, this is supposed to be achieved with ~50 logical qubits.
Universal quantum computers will also allow for the simulation of
quantum particles, which is required for solving particular materials
optimization problems involving large-scale quantum behavior.

We prefer to talk about useful quantum supremacy, because only 
when we solve real-world problems, it makes sense for VW.
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§ First letter: system under study is classical or quantum
§ Second letter: classical or quantum information 

processing device is used

Currently, certain hardware constraints are 
given:
• Up to 50 physical qubits for universal quantum 

computers by the end of 2017/ early 2018
• ~2.000 qubits on quantum annealing systems

Most promising right now:
• Quantum-assisted machine learning
• Augmentation of deep learning, reinforcement 

learning, optimization algorithms and sampling
• Quantum simulation

QUANTUM-ASSISTED ALGORITHMS
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Quantum annealing –
some things we’ve done so far
§ Traffic flow optimization
§ Reinforcement learning (i.e. financial

market prediction, self-driving vehicle)
§ Finite elements

§ Machine learning (i.e. neural networks, 
NNMF)

§ Clustering (i.e. IT threat detection)

§ Vehicle price prediction
§ Vehicle weight minimization

With classical computers, 
many of the most complex 
problems can’t be solved.

Clustering

Traffic flow optimization

Reinforcement learning

WHAT‘S HAPPENING AT VW (1)

Finite elements design

Materials
simulation
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WHAT‘S HAPPENING AT VW (2)

Additional results:

§ 5 academic R&D partnerships, mostly pro bono
§ Commercial partnerships with Google, D-Wave
§ Presentations received at 9 conferences
§ Publications pending in leading scientific journals

Gate model – we are working on
§ Optimization (i.e. enhancing traffic flow optimization)
§ Machine learning (i.e. qantum neural networks, financial 

market analysis)
§ Simulation for possible discovery of new materials 

(i.e. battery materials)
Materials
simulation
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TRAFFIC FLOW OPTIMIZATION AND ACTUAL STATUS

Why quantum?

• Recalculation happens almost instantaneously.

• What we achieve: maximization of flux at any time.

Actual status and next steps

• Electrify America – optimization of routes under 
consideration of charging pillars.

• Include additional optimization targets, and ideally work 
together with cities.

• Reduction of accidents, prediction and avoidance of 
„danger zones“ (insurance?), reduction of emissions.

Full publication and description at https://www.frontiersin.org/articles/10.3389/fict.2017.00029/full
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QUANTUM-ASSISTED REINFORCEMENT LEARNING

Reinforcement learning and motivation

• Rewarding good results, i.e., simulating millions of parking 
maneuvers and rewarding successful ones.

• Agents, such as self-driving vehicles, intend to find the best thing to 
do in a given situation to reach their goal (parking, maneuvering 
through traffic, etc.) – they learn by trial and error.

Goal: the closer to the real-world simulations are, the better the 
results

• As the world is dynamic, the agent may need to consider new 
observations/ data it hasn‘t seen before and adapt it‘s strategy.

• Given time-constraints, quantum-enhanced reinforcement learning 
has the potential to help agents analyze and learn quicker

Next steps

• Apply to far more complex real-world scenarios

Full publication and description at https://www.frontiersin.org/articles/10.3389/fphy.2017.00071/full 
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QUANTUM-ASSISTED CLUSTERING

Motivation
• Clustering is useful in a variety of applications, especially for uncovering and 

understanding network behavior, i.e.:
• model how something can move through a network. For example, malicious 

software will propagate more quickly through a dense community, compared 
to a sparse one

• extrapolate insight about organizational structures from complex 
communications meta-data

• look at clusters of fraudulent activity
Goal

• Invent a quantum-enhanced clustering algorithm that‘s more accurate and faster 
than purely classical clustering algorithms

Actual status and next steps

• First, quantum-enhanced clustering algorithm in place

• Application to complex real-world scenarios, i.e., cyber security

Full publication and description at https://arxiv.org/abs/1803.02886
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Quantum Artificial Neural Network (1)
Motivation
• Artificial neural networks may be used 

whenever software cannot be explicitly 
programmed to solve a task (or only 
with significant effort).

• Optimize a performance criterion using 
example data or past experience.

Goal
• Implement a QNN and verify if either 

performance or accuracy can be 
improved compared to a classical ANN.

Actual status
• First QNN in place.
• Application to complex real-world 

scenarios, i.e., MNIST data set.
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Quantum Artificial Neural Network (2)
• The D-Wave solves

!"# $, & = $( ) & ) $
where $ is the input vector, and & describes the 
relation between the variables.

• Existing quantum-assisted ANN approaches 
sample the weightspace.

• In our approach, we represent samples, 
weights and target variables as matrix and 
evaluate different configurations of the QNN 
in one annealing cycle.

Next steps

See what this approach can be used for:
• Weight initializer for classical ANN training

• Full ANN trainer
• Train on MNIST
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If ,- is a free vector, &,- is not free but its components are. & is a projection 
operator as described below, and ,- is the target vector. 

*+ =
0 0
0 1
1 0
1 1

+/
+9 =

0
+/
+9
+/+9

= ,-

A very, very simple example

0
1
0
0

0
1
0
1

0
0
0
1

0
0
1
0

Input

Input

Target

Projection

We represent & ,- for 
different weight 
vectors on the chip 
at once. For a simple 
QNN, we tested it for 
up to 20 QNNs at 
once.
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ELECTRONIC STRUCTURE CALCULATIONS (1)
Motivation

• With classical computers our calculations describe properties 
such as a molecule’s ground-state energy by using the 
Schrödinger equation to calculate mathematical parameters 
called wave functions.

• Classical computers can solve such problems exactly only for 
elementary molecules because of the great complexity of the 
many interactions of the multiple subatomic particles found in 
larger compounds.

• Exact solutions rapidly become unfeasible, even for the 
fastest computers working over the entire lifetime of the 
universe.

• Quantum computers do not require exponentially increasing 
time to solve larger and larger systems, so they do not suffer 
the same limitations.

Goal

• Find advanced materials
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• Electronic structure problems are mainly targeted by 
gate model approaches 

• Different quantum algorithms, as the variational
quantum Eigensolver (VQE) or the phase estimation 
algorithm (PEA), were developed to find the ground 
state of small molecules

• But: current gate model devices suffer from different 
challenges:

• Small number of qubits
• Decoherence effects
• Imperfect qubits and gates

ELECTRONIC STRUCTURE CALCULATIONS (2)

• Molecules can be described by a fermionic Hamiltonian

• ℎ"#(%) and ℎ"#'((%) are the one- and two-electron 
integrals for a specific interatomic distance %, )"* and )"
are the fermionic creation and annihilation operators

• As quantum devices use qubits, we have to map the 
fermionic operators onto qubit operators (e.g. by Jordan-
Wigner transformation)
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ELECTRONIC STRUCTURE CALCULATIONS (3)
• Hamiltonian consisting of qubit operators only, 

but how to map it on a QUBO?
• !", !$ and !% terms instead of !% terms 

only
• k-local terms instead of 2-local

• Below we show how to map such a &-qubit 
Hamiltonian with !", !$ and !% terms to a 
'&-qubit Hamiltonian with !% terms only
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• Reducing the dimensions from =-local to 2-local by 
using ancillary qubits

• Illustrative example:

• This can be used for finding a 2-local representation, 
yielding the standard Ising Hamiltonian:

min ±DEDFDG = min ±DHDG + DEDF − 2DEDH − 2DFDH + 3DH
DE, DF , DGDH ∈ 0,1
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ELECTRONIC STRUCTURE CALCULATIONS (4)

Sometimes the QPU calculations are a little off

Neural network prediction
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QUANTUM FINITE ELEMENTS METHOD
Motivation
• The finite elements method is used to optimize parts design in 

order to minimize a quantity, i.e., minimize the sound pressure 
at a given position around a part, or maximize the durability at 
certain areas.

• The elements influence each other, so a natural assumption 
is that qubits connected via couplers can be used to 
represent it.

Goal
• Invent a quantum-assisted finite element method for design 

optimization.
Actual status and next steps
• First, quantum-assisted finite element method in place
• Application to complex real-world scenarios, i.e., optimization 

of mirrors or chassis
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QUANTUM-ASSISTED WEIGHT MINIMIZATION 
FOR VEHICLE CONFIGURATIONS

Motivation

• CO2–calculation is switched from NEFZ to WLTP (individually per 
vehicle)

• Via the configurator, the customer should be able to calculate CO2-
span in advance

Goal

• Minimization of
• air resistance
• weight
• rolling friction

First results and next steps

• We can both find the minimum and >1 equivalent configuration in the 
first tests

Buildability rule: 
0181900 +MU27 ZMH9Y
X9XAA5G +F    EC +FG2     +MA8M +M5TM ZM5TI /M5TJ
X9XAA33 +ME2N ZMC1Y /MC9C /MU75 /MU76 /M41E /M43A
X9XAA5F +F    EC +FG2     +MA8M VM5TM
…

Weights: 
UP! 1,0 take 44   (1222A1): 868.0kg
Leichtmetallräder „woodstock“          (43A): 9.64kg
Sitzbezüge in Lederoptik                      (N3P): 0.38kg
Sitzbezüge in Stoff                                (N2T): -0.378kg
…
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QUANTUM-ASSISTED REGRESSION
Goal
• Optimize the price for vehicles based on 

changing data sets
• Invent a quantum-enhanced algorithm that does 

the job
Motivation
• No one did it before, so we need proof it works
• Our solution generalizes to far more complex 

machine learning problems, i.e. financial market 
prediction

First results and next steps
• Solution quality is equivalent to the best classical 

algorithms
• Proceed with far more complex problems



What’s next?
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VISION – FURTHER RESEARCH DIRECTIONS
Quantum machine learning

• Grover for ANN function evaluation
• Mapping ANNs directly on the chip
• Graph-splitting in terms of ANNs
• Stacking quantum RMBs to a deep belief net?
• Sampling weight space of ANNs
• Sampling for policy/ value evaluation in reinforcement learning
• Most efficient methods splitting classical and quantum ML
• Linear algebra simulation, i.e. least-squares linear regression
Quantum simulation

• Materials simulation, i.e. optimized anode or cathode-structure in terms of 
morphology, composition and doping

• High-temperature superconductivity
Quantum optimization

• Time-critical optimization problems, i.e. traffic flow
• Optimization of materials, robot behavior
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VISION – SPECIFIC USE CASES (1)
Materials research

• Materials simulation and optimization, i.e. 
optimized anode or cathode-structure in terms 
of morphology, composition and doping

• High-temperature superconductivity 
simulation – relevant for superconducting 
electric machines

Robotics and industry

• Optimization of production processes, faster 
product customization, variable speed & 
flexible manufacturing.

• Process optimization and –innovation.

• Optimizing analytics in order to optimize chassis 
production, corrosion protection, and painting, 
powertrain, end montage etc.

• Improve current and future operations as well as 
production (optimization of simulation related to 
physical processes such as mechanics, fluid 
dynamics, acoustics, …, finite element models).

• Response surface mining

• Grid control - optimization of energy distribution
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VISION – SPECIFIC USE CASES (2)
Enterprise functions optimization 

• Optimization of existing multi-variate and time-
critical financial analyses and predictions, i.e. 

• Financial planning

• Sales and marketing planning

• Product complexity management

• Supply chain and purchasing optimization

Optimization of complex financial processes, i.e. 
transaction costs problem: 

• Investment with transaction costs

• Asset allocation with transaction costs

• Minimize costs in various areas

• Build portfolios to maximize returns (given a level of risk)

• Maximize efficiency in design and operations of 
production planning

Mobility 

• Traffic flow under consideration of additional optimization 
targets (charging pillars, emission reduction, reduction of 
accidents)

• State space estimation, value iteration, and finding the 
optimal policy in a given state (quantum reinforcement 
learning).
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WE CHALLENGE QC, TOO

Implemented Algorithms:
• Simulated Annealing
• Parallel Tempering
• Markov Logic Network
• Mixed Integer Linear Program
• Greedy Optimisation
• tbd.

Implemented calls to ext. solvers:
• Qbsolve (D-Wave)
• Toulbar2   (INRA)
• CPLEX      (IBM)
• tbd.

The API will be made available to the Volkswagen Group during the next months and is 
planned to be put open source later
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RESEARCH AND EXCHANGE WITH

• Partnerships for grant proposals with FZ Juelich, Siemens, DLR, Trumpf

• 5 university partnerships, 9 research contracts

• Quantum Annealing (QA) and Machine Learning (RBMs, HQMMs, Q-Bayes-Nets, etc.)

• Risk and Quality-of-Service with QA:  Analysis of the result distribution 

• Quantum/classic-hybrid:  Analysis of sequential Entscheidungsproblems

• Analysis of the construction of optimisation problems for QA

• Porting a C/C++/Python/Shell-Library into a Java-API + Best Practices

• Relationship between Annealing time and result quality

• Influence of choice of final state used on the result quality

• Relationship between good/best solution, number of queries and problem size

• Effects on the anneal time via quantum simulation

• Potential partnership with Los Alamos National Lab

Leiden Institute of Advanced Computer 
Science
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