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๏ The Higgs boson
๏ Large extra-dimensions
๏ Supersymmetry
๏ Dark matter
๏ Baryogenesis
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๏ When counter-rotating bunches cross, only ~ 20 protons collide in one straight line
๏ Each p-p collision results in ~ 50 “interesting” tracks from charged particles produced

Looking for: A high-energy physics problem that has a natural formulation for quantum annealing, and is simple 

Chosen problem: Reconstructing proton-proton collision positions at the Large Hadron Collider (LHC)

The LHC is 100 m below the surface, 27 km in circumference Structure of colliding proton bunches

~ 8 cm

Which tracks originate together from a p-p collision?

๏ The LHC circulates protons inside its beam-pipes not in a continuous stream but in several closely packed bunches.
๏ Each bunch contains ~ 100 billion protons

Which tracks come from which p-p collision?
Where are the p-p collision points in a bunch?
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๏ The Compact Muon Solenoid is a particle detector at one (of four) p-p crossing point at the LHC
๏ Charged particles are reconstructed as tracks. All reconstructions come with uncertainties
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๏ Where a track approaches the beam (z-)axis closest has uncertainties zi ± δzi

๏ Uncertainties obscure which tracks originated together at p-p collision
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๏ Position of p-p collisions reduced to a clustering problem in 1-D
๏ Solved in CMS using Deterministic Annealing. Called “Primary Vertexing”
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๏ The Compact Muon Solenoid is a particle detector at one (of four) p-p crossing point at the LHC
๏ Charged particles are reconstructed as tracks. All reconstructions come with uncertainties

z axis

x axis
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Can D-Wave solve it using quantum annealing?

๏ Where a track approaches the beam (z-)axis closest has uncertainties zi ± δzi

๏ Uncertainties obscure which tracks originated together at p-p collision

๏ Position of p-p collisions reduced to a clustering problem in 1-D
๏ Solved in CMS using Deterministic Annealing. Called “Primary Vertexing”
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0 1 2p-p collision number: 

Tracks “cutting” beam axis
at physical positions 

LHC beam axis
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zi zj

D(i, j)

PRIMARY VERTEXING AT THE LHC WITH A QUANTUM COMPUTER
DEPARTMENT OF PHYSICS AND ASTRONOMY

Souvik Das, Andrew J. Wildridge, Sachin B. Vaidya, Andreas Jung

ABSTRACT: Clustering of charged particle tracks along the beam axis is the first step in reconstructing the positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a 
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of event 
topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles to reaching modern hadron collider event complexities and suggest research directions to overcome each.

PRIMARY VERTEXING AT THE LARGE HADRON COLLIDER 

~ 8 cm

Representative event in CMS with charged particle tracks from 78 collisions

• The LHC circulates protons inside its beam-pipes in 
bunches. Each bunch contains 100 billion protons 
(2012 run)

• When counter-rotating bunches cross, only 
~ 20 protons collide

• Each p-p collision emits charged particles that are 
detected as tracks by experiments like the Compact 
Muon Solenoid (CMS)

PRIMARY VERTEXING:
Which tracks come from which p-p collision?
Where exactly are the p-p collision positions?The CMS apparatus with person for scale

THE D-WAVE 2048 QUBIT QUANTUM COMPUTER

of the spins, respectively, and the biases hi and couplings
Jij encode a particular optimization problem. The time-
dependent variation of Δ and E is parametrized by s≡ t=tf
with time t ∈ ½0; tf" and total run (anneal) time tf. QA is
performed by first setting Δ ≫ E, which results in a ground
state into which the spins can be easily initialized [6]. Then
Δ is reduced and E is increased until E ≫ Δ. At this point,
the system Hamiltonian is dominated by HP, which
represents the encoded optimization problem. At the end
of the evolution, a ground state ofHP represents the lowest
energy configuration for the problem Hamiltonian and thus
a solution to the optimization problem.

III. QUANTUM ANNEALING PROCESSOR

We have built a processor that implements HS using
superconducting flux qubits as effective spins [6,7,23,24].
Figure 1(a) shows a photograph of the processor. Figure 1(c)
shows the circuit schematic of a pair of flux qubits with the
magnetic flux controls Φx

qi and Φx
ccjj. The annealing param-

eter s is controlled with the global bias Φx
ccjjðtÞ (see

Appendix A for the mapping between s and Φx
ccjj and a

description of how Φx
qi is provided for each qubit). The

strength and sign of the inductive coupling between pairs of
qubits is controlled with magnetic fluxΦx

co;ij that is provided
by an individual on-chip digital-to-analog converter for
each coupler [8]. The parameters hi and Jij are thus in situ
tunable, thereby allowing the encoding of a vast number of
problems. The time-dependent energy scales ΔðsÞ and EðsÞ
are calculated from measured qubit parameters and plotted
in Fig. 1(d). We calibrate and correct the individual flux
qubit parameters in our processor to ensure that every qubit
has a close-to-identical Δ and E (the energy gap Δ is
balanced to better than 8% between qubits and E to better
than 5%). See Appendix A for measurements of these
energy scales. The interqubit couplers are calibrated as
described in Ref. [25]. The processor we study here is
mounted on the mixing chamber of a dilution refrigerator
held at temperature T ¼ 12.5 mK.

IV. FERROMAGNETICALLY COUPLED
INSTANCES

The experiments reported herein focus on one of the
eight-qubit unit cells of the larger QA processor as
indicated in Fig. 1(a). The unit cell is isolated by setting
all couplings outside of that subsection to Jij ¼ 0 for all
experiments. We then pose specific HP instances with
strong ferromagnetic (FM) coupling Jij ¼ −2.5 and hi ¼ 0
to that unit cell, as illustrated in Figs. 1(e) and 1(f). These
configurations produce coupled two- and eight-qubit sys-
tems, respectively. The Hamiltonian (1) describes the
behavior of these systems during QA.
Typical observations of entanglement in the quantum

computing literature involve applying interactions between

FIG. 1. (a) Photograph of the QA processor used in this
study. We report measurements performed on the eight-qubit
unit cell indicated. The bodies of the qubits are extended
loops of Nb wiring (highlighted with red rectangles). Inter-
qubit couplers are located at the intersections of the qubit
bodies. (b) Electron micrograph showing the cross section of
a typical portion of the processor circuitry (described in more
detail in Appendix A). (c) Schematic diagram of a pair of
coupled superconducting flux qubits with external control
biases Φx

qi and Φx
ccjj and with flux through the body of the ith

qubit denoted as Φqi. An inductive coupling between the
qubits is tuned with the bias Φx

co;ij. (d) Energy scales ΔðsÞ
and EðsÞ in Hamiltonian (1) calculated from a rf SQUID
model based on the median of independently measured device
parameters for these eight qubits. See Appendix A for more
details. (e),(f) The two- and eight-qubit systems studied were
programmed to have the topologies shown. Qubits are
represented as gold spheres, and interqubit couplers, set to
J ¼ −2.5, are represented as silver lines.

T. LANTING et al. PHYS. REV. X 4, 021041 (2014)

021041-2

Schematic of a pair of superconducting flux 
qubits coupled by a programmable inductor

Copyright © D-Wave Systems Inc.
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� enabled by major technology changes in fabrication stack
� have demonstrated P6 prototype
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Processor mounted on dilution refrigerator
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The goal of quantum annealing (QA): model the Hamiltonian
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Technical Description of the D-Wave Quantum Processing Unit

Figure 2.15: A 3 � 3 � 4 Chimera graph. Nodes in an M � N � L Chimera graph represent each of the
2MNL qubits, qi. Edges (connections between nodes) in the graph, Ji,j, indicate couplings that may
be nonzero. As an example, J3,4 may be nonzero because an edge connects qubits 3 and 4, but J2,3
must always be zero because no edge connects qubits 2 and 3. The basic repeating block of Chimera
(a block of 2L variables with complete bipartite connectivity) may be tiled into an M � N lattice. The
left-side variables within each block connect vertically; the right-side variables, horizontally.

Figure 2.16: Each qubit has 6 couplers, 4 within and 2 between unit cells.

D-Wave User Manual 09-1109A-M
Copyright © D-Wave Systems Inc.
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Connectivity between qubits

PROBLEM FORMULATION AND OPTIMIZATION RESULTS

CONCLUSIONS AND OUTLOOK
Track clustering with a quantum annealer for primary vertex reconstruction at

hadron colliders

S. Das,� A. J. Wildridge, S. B. Vaidya, and A. Jung†

Department of Physics and Astronomy, Purdue University

(Dated: March 25, 2019)

Clustering of charged particle tracks along the beam axis is the first step in reconstructing the
positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of
primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of
event topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles
to reaching modern hadron collider event complexities and suggest research directions to overcome
each.

INTRODUCTION

Hadron colliders circulate counter-rotating beams of
hadrons in closely packed bunches that cross at desig-
nated interaction points. These interaction points are
instrumented with experimental apparatuses that detect
particles produced at hadron-hadron collisions when the
bunches cross. Reconstructing the positions of these col-
lisions within a bunch crossing, also known as primary
vertices, from the trajectories of charged particles de-
tected by the apparatuses is of paramount importance
for physics analyses. The Large Hadron Collider (LHC)
is a high luminosity collider that produces an average of
20 proton-proton (p-p) collisions at each bunch crossing,
distributed in one dimension along the beam axis. At
one of the LHC interaction points, the Compact Muon
Solenoid experiment (CMS) reconstructs the paths of
charged particles from p-p collisions as tracks detected
by its silicon tracker [1]. Track reconstruction uncertain-
ties obscure which tracks originated together at a primary
vertex. Thus, primary vertex reconstruction begins with
a one-dimensional clustering of tracks by their positions
along the beam axis where they approach it most closely,
also known as the tracks’ z0. In the CMS experiment,
this clustering is done on a classical computer using a
deterministic annealing algorithm that mimics a physi-
cal system approaching its lowest energy state iteratively
through a series of cooling operations [2]. In this Letter,
we demonstrate a method of performing this clustering
in one step on a D-Wave quantum annealer and report
preliminary results.

The D-Wave 2000Q quantum computer, available from
D-Wave Inc., performs computations through quantum
annealing [3–5]. The quantum processing unit (QPU)
has 2048 RF-SQUID flux qubits implemented as super-
conducting niobium loops [6]. Each qubit has a pro-
grammable external magnetic field to bias it. The net-
work of qubits is not fully connected and programmable
couplings have been implemented between 6016 pairs of
qubits. A computational problem is defined by setting
the biases (h

i

) and couplings (J
ij

) such that the ground

state of the qubits’ Hamiltonian corresponds to the solu-
tion. We call this the “problem Hamiltonian” (H

p

)

H
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, (1)

where �i

z

is a spin projection observable of the ith qubit
with eigenvalues +1 and -1. (This z direction is not
related to the beam axis at CMS.) It may be trivially
mapped to a bit observable q

i

with eigenvalues 0 and
1 through the shift 2q

i

= �i

z

+ I, where I is the iden-
tity matrix. The problem Hamiltonian may then be ex-
pressed for quadratic unconstrained binary optimization
(QUBO) as

H
p

=
X

i

a
i

q
i

+
X

i

X

j>i

b
ij

q
i

q
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, (2)

notwithstanding energy o↵sets that are irrelevant for op-
timization. The D-Wave 2000Q programming model al-
lows us to specify a problem in QUBO form by specifying
a

i

and b
ij

.
At the beginning of a typical annealing cycle in the

QPU, a driver Hamiltonian puts all qubits in a superpo-
sition of the computational basis states by introducing a
global energy bias in the transverse x�direction. Anneal-
ing proceeds by lowering this driver Hamiltonian which
simultaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land
in the ground state of H

p

if this change is su�ciently
gradual, the ground state is unique with a non-zero en-
ergy separation from other states, and the initial state
of the qubits is the ground state of the initial field [7–
9]. These conditions are di�cult to achieve experimen-
tally. We therefore anneal within tens of microseconds
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2

during which quantum tunneling leaves the system in a
low energy configuration at the end of the annealing pro-
cess [10]. We measure the final state of the qubits as
a solution, and repeat several times. The lowest energy
solution is then taken as the best one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version
of this algorithm has been described by V. Kumar, et
al [11]. Further, we distort the Hamiltonian to encour-
age annealing to the ground state given the clustering
characteristics of tracks observed at CMS. Given current
technological limitations, we cannot cluster thousands of
tracks into 20 or more primary vertices as expected at
the LHC. We show how our method scales with event
complexity by testing it on a variety of event topologies
from 2 primary vertices and 10 tracks to 5 primary ver-
tices and 15 tracks, where the positions of vertices and
tracks are drawn from measured distributions at CMS.

Finally, we discuss three obstacles for solving event
complexities relevant in high luminosity hadron collider
experiments and suggest directions of investigation to
overcome each. Extended to two dimensions, the method
be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
ticle showers. Research in this direction may acceler-
ate both quantum information science and high energy
physics instrumentation.
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CMS distributions of track z0 around vertices tend to
cluster D(i, j) near zero. This results in a cluster of en-
ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p
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for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p

ik

add up to 1 for all tracks; these are checked
o✏ine by a CPU and marked as invalid.

If each p
ik

is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
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RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].
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the LHC. We show how our method scales with event
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tices and 15 tracks, where the positions of vertices and
tracks are drawn from measured distributions at CMS.

Finally, we discuss three obstacles for solving event
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experiments and suggest directions of investigation to
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be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
ticle showers. Research in this direction may acceler-
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with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].
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cess [10]. We measure the final state of the qubits as
a solution, and repeat several times. The lowest energy
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sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik
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characteristics of tracks observed at CMS. Given current
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tracks into 20 or more primary vertices as expected at
the LHC. We show how our method scales with event
complexity by testing it on a variety of event topologies
from 2 primary vertices and 10 tracks to 5 primary ver-
tices and 15 tracks, where the positions of vertices and
tracks are drawn from measured distributions at CMS.

Finally, we discuss three obstacles for solving event
complexities relevant in high luminosity hadron collider
experiments and suggest directions of investigation to
overcome each. Extended to two dimensions, the method
be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
ticle showers. Research in this direction may acceler-
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where n
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is the number of
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2 [0, 1] is the probability of the ith track to
be associated with the kth vertex, and D(i, j) is a mea-
sure of distance between the reconstructed z0 parameters
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CMS distributions of track z0 around vertices tend to
cluster D(i, j) near zero. This results in a cluster of en-
ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p
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for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p

ik

add up to 1 for all tracks; these are checked
o✏ine by a CPU and marked as invalid.

If each p
ik

is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
14] and can be re-used for multiple events. We need to
program n
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n
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logical qubits and n
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RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].

• Adiabatic quantum computing exploits:
A system in ground state of a Hamiltonian evolves to 

ground state of perturbed Hamiltonian if perturbation is slow

• Quantum annealing is a practical approximation to adiabatic 
quantum computing in finite time, open system. Finds low-
energy states of interacting spin system using thermally-
assisted quantum tunneling

• D-Wave 2000Q processor contains 2048 artificial spins 
made from Nb RF-SQUIDs. Bias to each spin (hi) and 
couplings between spins (Jij) are programmable

• Physical reasons limit connectivity

• System prepared in ground state of “transverse” 
Hamiltonian. Turned off while turning on problem 
Hamiltonian.

• Spin Hamiltonian trivially shifted to quadratic unconstrained binary optimization (QUBO) form.

• Problem mapped from logical qubits to physical qubits to 
mitigate thermal bit flips using D-Wave’s proprietary algorithms

0 1 2p-p collision number: 

Tracks “cutting” beam axis
at physical positions 

LHC beam axis

pi0 pj0

zi zj

D(i, j)

• Objective function we minimize for clustering tracks to 
collisions is naturally in QUBO form

• pik is binary probability of track i associated with collision k. 
Represented by a qubit

• D(i, j) is measure of distance between tracks i and j. 
Uncertainties of track reconstruction are included

• λ enforces one track associated to one collision. 
Optimal λ = 1.2 × max(D(i, j))

• g(x; m) distorts D(i, j) to increase smaller values, thus 
making intermediate states approximately equidistant 
depending on m. Seen to improve solution convergence

Problem Hamiltonian in QUBO form

Distance measure between tracks

Distortion function to optimize convergence

• Algorithm tested on artificial events drawn from simulated 
and measured LHC distributions of collision positions and 
tracks

• Realistic track reconstruction uncertainties used
CMS Collaboration, JINST 9 (2014) P10009

• Illustration shows quantum annealing output for event 
with 3 collisions and 15 tracks

• Quantum state prepared and annealed 10,000 times.
• Annealing time = 20 µs
• Readout time = 123 µs
• Re-thermalization delay = 21 µs

• 6,825 solutions are valid, i.e. !k pik = 1 for all tracks

• 6,615 solutions are correct. Efficiency = 66%

• Small number of valid secondary solutions where one 
track has been misassociated

• Solution’s pik is track association to p-p collisions. 
Combined with zi and δzi, collision positions can be 
estimated

Energy spectrum of quantum annealing solutions 
for one event with 3 collisions and 15 tracks. 

How is this efficiency distributed?

• We consider an ensemble of 100 events with 3 collisions 
and 15 tracks thrown from measured CMS distributions

• Events with collisions spaced closely compared to track 
uncertainties are difficult for the QPU to resolve

• Results in a distribution of efficiencies with a mean of 42% 
and a standard deviation of 25%

Histogram of QPU convergence efficiency to the 
correct solution for 3 collisions and 15 tracks using 
100 events

How does solution finding efficiency scale?

• We repeated investigation for seven event topologies: 

• Complexity characterized by number of logical qubits

• Increasing complexity results in lower solution finding 
efficiency. Implies more annealing cycles needed. 

• For efficiency ϵ, to obtain at least 1 correct answer with 
95% certainty, we need N samples:

3

As an illustration of the algorithm, consider an event
with 3 vertices where 5 tracks emanate from each vertex.
This requires 45 logical qubits to encode. The biases
and couplings between them are obtained from Eq. 4 in
QUBO form. It takes 8 ms to program them into the
QPU. Sampling the QPU for solutions consists of an-
nealing as described in Eq. 3, readout of the qubits, and
a delay for re-thermalizing the qubits to mitigate inter-
sample correlations. Annealing is allowed for 20 µs by
default. Readout takes 123 µs, and the delay is set to 21
µs. 10,000 sampling cycles are performed. The energy
spectrum of the solutions, of which 6,825 are valid (where
p

ik

add up to 1 for every track) is shown in Fig. 1. The
energy scale is set by B(1) as defined in Eq. 3, which is
6h GHz in the QPU used for this study. Of the valid so-
lutions, 6,615 have landed on the lowest energy solution,
marked as “Solution 1” in the figure. On investigating
the qubit states, we find that the lowest energy solution
corresponds to the correct clustering of the tracks with
their respective vertices. Thus, the e�ciency of finding
the correct solution is noted as 66%. A small number
of valid solutions correspond to “Solution 2” where one
track has been misassociated with a vertex. Further mis-
associations result in higher energy valid solutions in the
spectrum.

Next, we consider an ensemble of 100 such events with
3 primary vertices and 15 tracks thrown from measured
CMS distributions. Events with vertices spaced closely
together compared to the spread of their tracks are dif-
ficult for the QPU to solve correctly and result in lower
convergence e�ciencies than events where vertices are
widely separated. This results in a distribution of ef-
ficiencies shown in Fig. 2 with a mean of 42% and a
standard deviation of 25%.

To characterize how this e�ciency depends on event
complexity, we repeated our investigation for six other
event topologies: 2 vertices and 10 tracks, 2 vertices 16
tracks, 3 vertices 9 tracks, 4 vertices 12 tracks, 4 vertices
16 tracks, and 5 vertices 15 tracks. With increasing com-
plexity, measured by the number of logical qubits needed,
we observe a decreasing e�ciency shown in Fig. 3. The
trend has been empirically fitted to a quadratic form.

We determine the time it takes to solve an event on
the QPU by finding the number of samples needed to
obtain at least 1 correct answer with 95% certainty. This
is estimated from the convergence e�ciency. Assuming
a binomial distribution around the mean convergence ef-
ficiency ✏, we calculate the number of samples needed to
be

N = log1�✏

0.05. (7)

Thus, while we need 2 samples (330 µs) for events with
2 vertices and 10 or 16 tracks, and 3 samples (490 µs)
for events with 3 vertices and 9 tracks, we need approx-
imately 10,000 samples (1.6 s) for events with 5 vertices
and 15 tracks.

FIG. 1. The energy spectrum of solutions for one event with
3 primary vertices and 15 tracks explored by the QPU with
10,000 samples. Energies corresponding to valid solutions,
where the pik add up to 1 for every track, are plotted with
solid lines while invalid solutions are plotted with dashed lines.
The best and next-to-best valid solutions are indicated as So-
lutions 1 and 2, respectively. For clarity, the histogram is
binned by 1 GHz below 20 GHz, by 10 GHz for 20 – 30 GHz,
and by 50 GHz above 30 GHz. Events in 10 (50) GHz bins
are normalized by 10 (50).

FIG. 2. A histogram of QPU convergence e�ciency to the
correct solution for the case of 3 primary vertices and 15 tracks
using 100 events.

Dependence of solution finding efficiency on track 
clustering problem complexity measured in the 
number of logical qubits used

Track clustering, first step of vertexing at the LHC, finds 
a  natural implementation on a quantum annealer.

• Track association to p-p collision recovered
• p-p collision positions reconstructed from track 

positions that belong to a collision

LHC produces 1000s of tracks, 20 or more collisions per 
bunch-crossing. Three obstacles to scaling up:

• Obstacle 1. Decreasing solution finding efficiency with 
event complexity. Research paths:

• Find theoretical model of how energy spacing between 
states affect annealing to the ground state

• Modified annealing schedule to kick system out of local 
minima with wide tunneling barriers

• Obstacle 2. Failure of graph embedding from logical to 
physical qubits. Research paths:

• Customize graph embedding algorithm
• Delay annealing of long chains of qubits
• D-Wave Pegasus processor with 5,000+ qubits and 15 

connections per qubit will alleviate this

• Obstacle 3. Limited numbers of qubits. Research path:
• Hierarchical application of clustering algorithm
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Figure 1: Illustration of the penalty D(i, j) imposed by the problem Hamiltonian in Eq. 4 when widely separated tracks in z0, zi and zj are
associated with the same p-p collision. Collisions are labeled by integers from 0 to nV � 1. The algorithm solves for the association matrix
pik where i is the track index and k is the collision index.

multaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land in
the ground state of H

p

if this change is su�ciently gradual,
the ground state is unique with a non-zero energy separa-
tion from other states, and the initial state of the qubits is
the ground state of the initial field [6, 7, 8]. These condi-
tions are di�cult to achieve experimentally. We therefore
anneal within tens of microseconds during which quantum
tunneling leaves the system in a low energy configuration
at the end of the annealing process [9]. We measure the
final state of the qubits as a solution, and repeat several
times. The lowest energy solution is then taken as the best
one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version of
this algorithm has been described by V. Kumar, et al [10].
Further, we distort the Hamiltonian to encourage anneal-
ing to the ground state given the clustering characteristics
of tracks observed at CMS. Given current technological
limitations, we cannot cluster thousands of tracks into 20
or more primary vertices as expected at the LHC. We show
how our method scales with event complexity by testing
it on a variety of event topologies from 2 primary ver-
tices and 10 tracks to 5 primary vertices and 15 tracks,
where the positions of vertices and tracks are drawn from
measured distributions at CMS. Our algorithm is not a
quantum-classical hybrid, and relies entirely on thermally
assisted quantum tunneling. This allows us to benchmark

it clearly against simulated annealing running on a mod-
ern CPU in the same period of time as a sampling cycle
on the QPU.

Finally, we discuss three directions of research to im-
prove this algorithm to solve event complexities relevant
in high luminosity hadron collider experiments. Extended
to two dimensions, the method can be used for other high
energy physics applications like clustering energy deposits
in calorimeters to identify particle showers. Research in
this direction may accelerate both quantum information
science and high energy physics instrumentation.

2. Formulation

For track clustering, we seek the ground state of the
problem Hamiltonian
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where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to be
associated with the kth vertex, and D(i, j) is a measure of
distance between the reconstructed z0 parameters of the
ith and jth tracks.

As in any clustering algorithm, a density threshold of
tracks must be set that determines n

V

. In this paper, we
order the tracks in z0 and count the number of gaps greater
than a threshold of 5 mm. n

V

is set to this number plus
one.

For D(i, j), we find the absolute distance between z
i

and z
j

divided by the quadrature sum of the measurement
uncertainties �z

i

and �z
j

to be an e↵ective measure:
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. (5)

CMS distributions of track z0 around vertices tend to clus-
ter D(i, j) near zero. This results in a cluster of energy

2

๏ Clustering problem naturally expressed in QUBO form (V. Kumar, et. al. “Quantum annealing for combinatorial clustering” Quantum Inf. Processing 17 (2018) 39)
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PRIMARY VERTEXING AT THE LHC WITH A QUANTUM COMPUTER
DEPARTMENT OF PHYSICS AND ASTRONOMY

Souvik Das, Andrew J. Wildridge, Sachin B. Vaidya, Andreas Jung

ABSTRACT: Clustering of charged particle tracks along the beam axis is the first step in reconstructing the positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a 
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of event 
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PRIMARY VERTEXING AT THE LARGE HADRON COLLIDER 

~ 8 cm

Representative event in CMS with charged particle tracks from 78 collisions

• The LHC circulates protons inside its beam-pipes in 
bunches. Each bunch contains 100 billion protons 
(2012 run)

• When counter-rotating bunches cross, only 
~ 20 protons collide

• Each p-p collision emits charged particles that are 
detected as tracks by experiments like the Compact 
Muon Solenoid (CMS)

PRIMARY VERTEXING:
Which tracks come from which p-p collision?
Where exactly are the p-p collision positions?The CMS apparatus with person for scale

THE D-WAVE 2048 QUBIT QUANTUM COMPUTER

of the spins, respectively, and the biases hi and couplings
Jij encode a particular optimization problem. The time-
dependent variation of Δ and E is parametrized by s≡ t=tf
with time t ∈ ½0; tf" and total run (anneal) time tf. QA is
performed by first setting Δ ≫ E, which results in a ground
state into which the spins can be easily initialized [6]. Then
Δ is reduced and E is increased until E ≫ Δ. At this point,
the system Hamiltonian is dominated by HP, which
represents the encoded optimization problem. At the end
of the evolution, a ground state ofHP represents the lowest
energy configuration for the problem Hamiltonian and thus
a solution to the optimization problem.

III. QUANTUM ANNEALING PROCESSOR

We have built a processor that implements HS using
superconducting flux qubits as effective spins [6,7,23,24].
Figure 1(a) shows a photograph of the processor. Figure 1(c)
shows the circuit schematic of a pair of flux qubits with the
magnetic flux controls Φx

qi and Φx
ccjj. The annealing param-

eter s is controlled with the global bias Φx
ccjjðtÞ (see

Appendix A for the mapping between s and Φx
ccjj and a

description of how Φx
qi is provided for each qubit). The

strength and sign of the inductive coupling between pairs of
qubits is controlled with magnetic fluxΦx

co;ij that is provided
by an individual on-chip digital-to-analog converter for
each coupler [8]. The parameters hi and Jij are thus in situ
tunable, thereby allowing the encoding of a vast number of
problems. The time-dependent energy scales ΔðsÞ and EðsÞ
are calculated from measured qubit parameters and plotted
in Fig. 1(d). We calibrate and correct the individual flux
qubit parameters in our processor to ensure that every qubit
has a close-to-identical Δ and E (the energy gap Δ is
balanced to better than 8% between qubits and E to better
than 5%). See Appendix A for measurements of these
energy scales. The interqubit couplers are calibrated as
described in Ref. [25]. The processor we study here is
mounted on the mixing chamber of a dilution refrigerator
held at temperature T ¼ 12.5 mK.

IV. FERROMAGNETICALLY COUPLED
INSTANCES

The experiments reported herein focus on one of the
eight-qubit unit cells of the larger QA processor as
indicated in Fig. 1(a). The unit cell is isolated by setting
all couplings outside of that subsection to Jij ¼ 0 for all
experiments. We then pose specific HP instances with
strong ferromagnetic (FM) coupling Jij ¼ −2.5 and hi ¼ 0
to that unit cell, as illustrated in Figs. 1(e) and 1(f). These
configurations produce coupled two- and eight-qubit sys-
tems, respectively. The Hamiltonian (1) describes the
behavior of these systems during QA.
Typical observations of entanglement in the quantum

computing literature involve applying interactions between

FIG. 1. (a) Photograph of the QA processor used in this
study. We report measurements performed on the eight-qubit
unit cell indicated. The bodies of the qubits are extended
loops of Nb wiring (highlighted with red rectangles). Inter-
qubit couplers are located at the intersections of the qubit
bodies. (b) Electron micrograph showing the cross section of
a typical portion of the processor circuitry (described in more
detail in Appendix A). (c) Schematic diagram of a pair of
coupled superconducting flux qubits with external control
biases Φx

qi and Φx
ccjj and with flux through the body of the ith

qubit denoted as Φqi. An inductive coupling between the
qubits is tuned with the bias Φx

co;ij. (d) Energy scales ΔðsÞ
and EðsÞ in Hamiltonian (1) calculated from a rf SQUID
model based on the median of independently measured device
parameters for these eight qubits. See Appendix A for more
details. (e),(f) The two- and eight-qubit systems studied were
programmed to have the topologies shown. Qubits are
represented as gold spheres, and interqubit couplers, set to
J ¼ −2.5, are represented as silver lines.

T. LANTING et al. PHYS. REV. X 4, 021041 (2014)

021041-2

Schematic of a pair of superconducting flux 
qubits coupled by a programmable inductor
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Next generation architecture signi�cantly enhances connectivity
Chimera C16 - DW 2000Q Pegasus P6 - 680 Qubit Prototype

� most signi�cant architecture change since �rst processor D-Wave One
� enabled by major technology changes in fabrication stack
� have demonstrated P6 prototype
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Processor mounted on dilution refrigerator
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The goal of quantum annealing (QA): model the Hamiltonian
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Technical Description of the D-Wave Quantum Processing Unit

Figure 2.15: A 3 � 3 � 4 Chimera graph. Nodes in an M � N � L Chimera graph represent each of the
2MNL qubits, qi. Edges (connections between nodes) in the graph, Ji,j, indicate couplings that may
be nonzero. As an example, J3,4 may be nonzero because an edge connects qubits 3 and 4, but J2,3
must always be zero because no edge connects qubits 2 and 3. The basic repeating block of Chimera
(a block of 2L variables with complete bipartite connectivity) may be tiled into an M � N lattice. The
left-side variables within each block connect vertically; the right-side variables, horizontally.

Figure 2.16: Each qubit has 6 couplers, 4 within and 2 between unit cells.

D-Wave User Manual 09-1109A-M
Copyright © D-Wave Systems Inc.
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Connectivity between qubits

PROBLEM FORMULATION AND OPTIMIZATION RESULTS

CONCLUSIONS AND OUTLOOK
Track clustering with a quantum annealer for primary vertex reconstruction at

hadron colliders
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Clustering of charged particle tracks along the beam axis is the first step in reconstructing the
positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of
primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of
event topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles
to reaching modern hadron collider event complexities and suggest research directions to overcome
each.

INTRODUCTION

Hadron colliders circulate counter-rotating beams of
hadrons in closely packed bunches that cross at desig-
nated interaction points. These interaction points are
instrumented with experimental apparatuses that detect
particles produced at hadron-hadron collisions when the
bunches cross. Reconstructing the positions of these col-
lisions within a bunch crossing, also known as primary
vertices, from the trajectories of charged particles de-
tected by the apparatuses is of paramount importance
for physics analyses. The Large Hadron Collider (LHC)
is a high luminosity collider that produces an average of
20 proton-proton (p-p) collisions at each bunch crossing,
distributed in one dimension along the beam axis. At
one of the LHC interaction points, the Compact Muon
Solenoid experiment (CMS) reconstructs the paths of
charged particles from p-p collisions as tracks detected
by its silicon tracker [1]. Track reconstruction uncertain-
ties obscure which tracks originated together at a primary
vertex. Thus, primary vertex reconstruction begins with
a one-dimensional clustering of tracks by their positions
along the beam axis where they approach it most closely,
also known as the tracks’ z0. In the CMS experiment,
this clustering is done on a classical computer using a
deterministic annealing algorithm that mimics a physi-
cal system approaching its lowest energy state iteratively
through a series of cooling operations [2]. In this Letter,
we demonstrate a method of performing this clustering
in one step on a D-Wave quantum annealer and report
preliminary results.

The D-Wave 2000Q quantum computer, available from
D-Wave Inc., performs computations through quantum
annealing [3–5]. The quantum processing unit (QPU)
has 2048 RF-SQUID flux qubits implemented as super-
conducting niobium loops [6]. Each qubit has a pro-
grammable external magnetic field to bias it. The net-
work of qubits is not fully connected and programmable
couplings have been implemented between 6016 pairs of
qubits. A computational problem is defined by setting
the biases (h

i

) and couplings (J
ij

) such that the ground

state of the qubits’ Hamiltonian corresponds to the solu-
tion. We call this the “problem Hamiltonian” (H

p

)
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where �i

z

is a spin projection observable of the ith qubit
with eigenvalues +1 and -1. (This z direction is not
related to the beam axis at CMS.) It may be trivially
mapped to a bit observable q

i

with eigenvalues 0 and
1 through the shift 2q

i

= �i

z

+ I, where I is the iden-
tity matrix. The problem Hamiltonian may then be ex-
pressed for quadratic unconstrained binary optimization
(QUBO) as
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notwithstanding energy o↵sets that are irrelevant for op-
timization. The D-Wave 2000Q programming model al-
lows us to specify a problem in QUBO form by specifying
a

i

and b
ij

.
At the beginning of a typical annealing cycle in the

QPU, a driver Hamiltonian puts all qubits in a superpo-
sition of the computational basis states by introducing a
global energy bias in the transverse x�direction. Anneal-
ing proceeds by lowering this driver Hamiltonian which
simultaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land
in the ground state of H

p

if this change is su�ciently
gradual, the ground state is unique with a non-zero en-
ergy separation from other states, and the initial state
of the qubits is the ground state of the initial field [7–
9]. These conditions are di�cult to achieve experimen-
tally. We therefore anneal within tens of microseconds
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2

during which quantum tunneling leaves the system in a
low energy configuration at the end of the annealing pro-
cess [10]. We measure the final state of the qubits as
a solution, and repeat several times. The lowest energy
solution is then taken as the best one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version
of this algorithm has been described by V. Kumar, et
al [11]. Further, we distort the Hamiltonian to encour-
age annealing to the ground state given the clustering
characteristics of tracks observed at CMS. Given current
technological limitations, we cannot cluster thousands of
tracks into 20 or more primary vertices as expected at
the LHC. We show how our method scales with event
complexity by testing it on a variety of event topologies
from 2 primary vertices and 10 tracks to 5 primary ver-
tices and 15 tracks, where the positions of vertices and
tracks are drawn from measured distributions at CMS.

Finally, we discuss three obstacles for solving event
complexities relevant in high luminosity hadron collider
experiments and suggest directions of investigation to
overcome each. Extended to two dimensions, the method
be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
ticle showers. Research in this direction may acceler-
ate both quantum information science and high energy
physics instrumentation.

FORMULATION

For track clustering, we seek the ground state of the
problem Hamiltonian
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where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to
be associated with the kth vertex, and D(i, j) is a mea-
sure of distance between the reconstructed z0 parameters
of the ith and jth tracks. For one-dimensional clustering,
we find the absolute distance between z

i

and z
j

divided
by the quadrature sum of the measurement uncertainties

�z
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and �z
j

to be an e↵ective measure:

D(i, j) =
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� z
j
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�z2

i

+ �z2
j

. (5)

CMS distributions of track z0 around vertices tend to
cluster D(i, j) near zero. This results in a cluster of en-
ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p

ik

for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p

ik

add up to 1 for all tracks; these are checked
o✏ine by a CPU and marked as invalid.

If each p
ik

is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
14] and can be re-used for multiple events. We need to
program n

V

n
T

logical qubits and n
V

n
T

(n
V

+ n
T

� 2)/2
couplings between them to encode H

p

.

RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].
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must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p

ik

add up to 1 for all tracks; these are checked
o✏ine by a CPU and marked as invalid.

If each p
ik

is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
14] and can be re-used for multiple events. We need to
program n

V

n
T

logical qubits and n
V

n
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(n
V
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� 2)/2
couplings between them to encode H

p

.

RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].
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during which quantum tunneling leaves the system in a
low energy configuration at the end of the annealing pro-
cess [10]. We measure the final state of the qubits as
a solution, and repeat several times. The lowest energy
solution is then taken as the best one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version
of this algorithm has been described by V. Kumar, et
al [11]. Further, we distort the Hamiltonian to encour-
age annealing to the ground state given the clustering
characteristics of tracks observed at CMS. Given current
technological limitations, we cannot cluster thousands of
tracks into 20 or more primary vertices as expected at
the LHC. We show how our method scales with event
complexity by testing it on a variety of event topologies
from 2 primary vertices and 10 tracks to 5 primary ver-
tices and 15 tracks, where the positions of vertices and
tracks are drawn from measured distributions at CMS.

Finally, we discuss three obstacles for solving event
complexities relevant in high luminosity hadron collider
experiments and suggest directions of investigation to
overcome each. Extended to two dimensions, the method
be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
ticle showers. Research in this direction may acceler-
ate both quantum information science and high energy
physics instrumentation.

FORMULATION

For track clustering, we seek the ground state of the
problem Hamiltonian
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where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to
be associated with the kth vertex, and D(i, j) is a mea-
sure of distance between the reconstructed z0 parameters
of the ith and jth tracks. For one-dimensional clustering,
we find the absolute distance between z

i

and z
j

divided
by the quadrature sum of the measurement uncertainties

�z
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and �z
j

to be an e↵ective measure:
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CMS distributions of track z0 around vertices tend to
cluster D(i, j) near zero. This results in a cluster of en-
ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p

ik

for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p

ik

add up to 1 for all tracks; these are checked
o✏ine by a CPU and marked as invalid.

If each p
ik

is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
14] and can be re-used for multiple events. We need to
program n

V

n
T

logical qubits and n
V

n
T

(n
V

+ n
T

� 2)/2
couplings between them to encode H

p

.

RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].

• Adiabatic quantum computing exploits:
A system in ground state of a Hamiltonian evolves to 

ground state of perturbed Hamiltonian if perturbation is slow

• Quantum annealing is a practical approximation to adiabatic 
quantum computing in finite time, open system. Finds low-
energy states of interacting spin system using thermally-
assisted quantum tunneling

• D-Wave 2000Q processor contains 2048 artificial spins 
made from Nb RF-SQUIDs. Bias to each spin (hi) and 
couplings between spins (Jij) are programmable

• Physical reasons limit connectivity

• System prepared in ground state of “transverse” 
Hamiltonian. Turned off while turning on problem 
Hamiltonian.

• Spin Hamiltonian trivially shifted to quadratic unconstrained binary optimization (QUBO) form.

• Problem mapped from logical qubits to physical qubits to 
mitigate thermal bit flips using D-Wave’s proprietary algorithms

0 1 2p-p collision number: 

Tracks “cutting” beam axis
at physical positions 

LHC beam axis

pi0 pj0

zi zj

D(i, j)

• Objective function we minimize for clustering tracks to 
collisions is naturally in QUBO form

• pik is binary probability of track i associated with collision k. 
Represented by a qubit

• D(i, j) is measure of distance between tracks i and j. 
Uncertainties of track reconstruction are included

• λ enforces one track associated to one collision. 
Optimal λ = 1.2 × max(D(i, j))

• g(x; m) distorts D(i, j) to increase smaller values, thus 
making intermediate states approximately equidistant 
depending on m. Seen to improve solution convergence

Problem Hamiltonian in QUBO form

Distance measure between tracks

Distortion function to optimize convergence

• Algorithm tested on artificial events drawn from simulated 
and measured LHC distributions of collision positions and 
tracks

• Realistic track reconstruction uncertainties used
CMS Collaboration, JINST 9 (2014) P10009

• Illustration shows quantum annealing output for event 
with 3 collisions and 15 tracks

• Quantum state prepared and annealed 10,000 times.
• Annealing time = 20 µs
• Readout time = 123 µs
• Re-thermalization delay = 21 µs

• 6,825 solutions are valid, i.e. !k pik = 1 for all tracks

• 6,615 solutions are correct. Efficiency = 66%

• Small number of valid secondary solutions where one 
track has been misassociated

• Solution’s pik is track association to p-p collisions. 
Combined with zi and δzi, collision positions can be 
estimated

Energy spectrum of quantum annealing solutions 
for one event with 3 collisions and 15 tracks. 

How is this efficiency distributed?

• We consider an ensemble of 100 events with 3 collisions 
and 15 tracks thrown from measured CMS distributions

• Events with collisions spaced closely compared to track 
uncertainties are difficult for the QPU to resolve

• Results in a distribution of efficiencies with a mean of 42% 
and a standard deviation of 25%

Histogram of QPU convergence efficiency to the 
correct solution for 3 collisions and 15 tracks using 
100 events

How does solution finding efficiency scale?

• We repeated investigation for seven event topologies: 

• Complexity characterized by number of logical qubits

• Increasing complexity results in lower solution finding 
efficiency. Implies more annealing cycles needed. 

• For efficiency ϵ, to obtain at least 1 correct answer with 
95% certainty, we need N samples:

3

As an illustration of the algorithm, consider an event
with 3 vertices where 5 tracks emanate from each vertex.
This requires 45 logical qubits to encode. The biases
and couplings between them are obtained from Eq. 4 in
QUBO form. It takes 8 ms to program them into the
QPU. Sampling the QPU for solutions consists of an-
nealing as described in Eq. 3, readout of the qubits, and
a delay for re-thermalizing the qubits to mitigate inter-
sample correlations. Annealing is allowed for 20 µs by
default. Readout takes 123 µs, and the delay is set to 21
µs. 10,000 sampling cycles are performed. The energy
spectrum of the solutions, of which 6,825 are valid (where
p

ik

add up to 1 for every track) is shown in Fig. 1. The
energy scale is set by B(1) as defined in Eq. 3, which is
6h GHz in the QPU used for this study. Of the valid so-
lutions, 6,615 have landed on the lowest energy solution,
marked as “Solution 1” in the figure. On investigating
the qubit states, we find that the lowest energy solution
corresponds to the correct clustering of the tracks with
their respective vertices. Thus, the e�ciency of finding
the correct solution is noted as 66%. A small number
of valid solutions correspond to “Solution 2” where one
track has been misassociated with a vertex. Further mis-
associations result in higher energy valid solutions in the
spectrum.

Next, we consider an ensemble of 100 such events with
3 primary vertices and 15 tracks thrown from measured
CMS distributions. Events with vertices spaced closely
together compared to the spread of their tracks are dif-
ficult for the QPU to solve correctly and result in lower
convergence e�ciencies than events where vertices are
widely separated. This results in a distribution of ef-
ficiencies shown in Fig. 2 with a mean of 42% and a
standard deviation of 25%.

To characterize how this e�ciency depends on event
complexity, we repeated our investigation for six other
event topologies: 2 vertices and 10 tracks, 2 vertices 16
tracks, 3 vertices 9 tracks, 4 vertices 12 tracks, 4 vertices
16 tracks, and 5 vertices 15 tracks. With increasing com-
plexity, measured by the number of logical qubits needed,
we observe a decreasing e�ciency shown in Fig. 3. The
trend has been empirically fitted to a quadratic form.

We determine the time it takes to solve an event on
the QPU by finding the number of samples needed to
obtain at least 1 correct answer with 95% certainty. This
is estimated from the convergence e�ciency. Assuming
a binomial distribution around the mean convergence ef-
ficiency ✏, we calculate the number of samples needed to
be

N = log1�✏

0.05. (7)

Thus, while we need 2 samples (330 µs) for events with
2 vertices and 10 or 16 tracks, and 3 samples (490 µs)
for events with 3 vertices and 9 tracks, we need approx-
imately 10,000 samples (1.6 s) for events with 5 vertices
and 15 tracks.

FIG. 1. The energy spectrum of solutions for one event with
3 primary vertices and 15 tracks explored by the QPU with
10,000 samples. Energies corresponding to valid solutions,
where the pik add up to 1 for every track, are plotted with
solid lines while invalid solutions are plotted with dashed lines.
The best and next-to-best valid solutions are indicated as So-
lutions 1 and 2, respectively. For clarity, the histogram is
binned by 1 GHz below 20 GHz, by 10 GHz for 20 – 30 GHz,
and by 50 GHz above 30 GHz. Events in 10 (50) GHz bins
are normalized by 10 (50).

FIG. 2. A histogram of QPU convergence e�ciency to the
correct solution for the case of 3 primary vertices and 15 tracks
using 100 events.

Dependence of solution finding efficiency on track 
clustering problem complexity measured in the 
number of logical qubits used

Track clustering, first step of vertexing at the LHC, finds 
a  natural implementation on a quantum annealer.

• Track association to p-p collision recovered
• p-p collision positions reconstructed from track 

positions that belong to a collision

LHC produces 1000s of tracks, 20 or more collisions per 
bunch-crossing. Three obstacles to scaling up:

• Obstacle 1. Decreasing solution finding efficiency with 
event complexity. Research paths:

• Find theoretical model of how energy spacing between 
states affect annealing to the ground state

• Modified annealing schedule to kick system out of local 
minima with wide tunneling barriers

• Obstacle 2. Failure of graph embedding from logical to 
physical qubits. Research paths:

• Customize graph embedding algorithm
• Delay annealing of long chains of qubits
• D-Wave Pegasus processor with 5,000+ qubits and 15 

connections per qubit will alleviate this

• Obstacle 3. Limited numbers of qubits. Research path:
• Hierarchical application of clustering algorithm
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Figure 1: Illustration of the penalty D(i, j) imposed by the problem Hamiltonian in Eq. 4 when widely separated tracks in z0, zi and zj are
associated with the same p-p collision. Collisions are labeled by integers from 0 to nV � 1. The algorithm solves for the association matrix
pik where i is the track index and k is the collision index.

multaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land in
the ground state of H

p

if this change is su�ciently gradual,
the ground state is unique with a non-zero energy separa-
tion from other states, and the initial state of the qubits is
the ground state of the initial field [6, 7, 8]. These condi-
tions are di�cult to achieve experimentally. We therefore
anneal within tens of microseconds during which quantum
tunneling leaves the system in a low energy configuration
at the end of the annealing process [9]. We measure the
final state of the qubits as a solution, and repeat several
times. The lowest energy solution is then taken as the best
one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version of
this algorithm has been described by V. Kumar, et al [10].
Further, we distort the Hamiltonian to encourage anneal-
ing to the ground state given the clustering characteristics
of tracks observed at CMS. Given current technological
limitations, we cannot cluster thousands of tracks into 20
or more primary vertices as expected at the LHC. We show
how our method scales with event complexity by testing
it on a variety of event topologies from 2 primary ver-
tices and 10 tracks to 5 primary vertices and 15 tracks,
where the positions of vertices and tracks are drawn from
measured distributions at CMS. Our algorithm is not a
quantum-classical hybrid, and relies entirely on thermally
assisted quantum tunneling. This allows us to benchmark

it clearly against simulated annealing running on a mod-
ern CPU in the same period of time as a sampling cycle
on the QPU.

Finally, we discuss three directions of research to im-
prove this algorithm to solve event complexities relevant
in high luminosity hadron collider experiments. Extended
to two dimensions, the method can be used for other high
energy physics applications like clustering energy deposits
in calorimeters to identify particle showers. Research in
this direction may accelerate both quantum information
science and high energy physics instrumentation.

2. Formulation

For track clustering, we seek the ground state of the
problem Hamiltonian
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where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to be
associated with the kth vertex, and D(i, j) is a measure of
distance between the reconstructed z0 parameters of the
ith and jth tracks.

As in any clustering algorithm, a density threshold of
tracks must be set that determines n

V

. In this paper, we
order the tracks in z0 and count the number of gaps greater
than a threshold of 5 mm. n

V

is set to this number plus
one.

For D(i, j), we find the absolute distance between z
i

and z
j

divided by the quadrature sum of the measurement
uncertainties �z

i

and �z
j

to be an e↵ective measure:

D(i, j) =
|z

i

� z
j

|q
�z2

i

+ �z2
j

. (5)

CMS distributions of track z0 around vertices tend to clus-
ter D(i, j) near zero. This results in a cluster of energy

2

๏ Clustering problem naturally expressed in QUBO form (V. Kumar, et. al. “Quantum annealing for combinatorial clustering” Quantum Inf. Processing 17 (2018) 39)

➡ Probability (0 or 1) of ith track to have come from kth p-p collision is pik. Element pik is represented by a qubit



➡ Coupling between two qubits pik and pjk that represent association of two tracks to same p-p collision k is a distance 
measure between the tracks D(i, j). Punish associations corresponding to widely separated tracks

➡ D(i, j) is Manhattan distance attenuated by uncertainty

Track clustering QUBO formulation for D-Wave 6
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PRIMARY VERTEXING AT THE LHC WITH A QUANTUM COMPUTER
DEPARTMENT OF PHYSICS AND ASTRONOMY

Souvik Das, Andrew J. Wildridge, Sachin B. Vaidya, Andreas Jung

ABSTRACT: Clustering of charged particle tracks along the beam axis is the first step in reconstructing the positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a 
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of event 
topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles to reaching modern hadron collider event complexities and suggest research directions to overcome each.

PRIMARY VERTEXING AT THE LARGE HADRON COLLIDER 

~ 8 cm

Representative event in CMS with charged particle tracks from 78 collisions

• The LHC circulates protons inside its beam-pipes in 
bunches. Each bunch contains 100 billion protons 
(2012 run)

• When counter-rotating bunches cross, only 
~ 20 protons collide

• Each p-p collision emits charged particles that are 
detected as tracks by experiments like the Compact 
Muon Solenoid (CMS)

PRIMARY VERTEXING:
Which tracks come from which p-p collision?
Where exactly are the p-p collision positions?The CMS apparatus with person for scale

THE D-WAVE 2048 QUBIT QUANTUM COMPUTER

of the spins, respectively, and the biases hi and couplings
Jij encode a particular optimization problem. The time-
dependent variation of Δ and E is parametrized by s≡ t=tf
with time t ∈ ½0; tf" and total run (anneal) time tf. QA is
performed by first setting Δ ≫ E, which results in a ground
state into which the spins can be easily initialized [6]. Then
Δ is reduced and E is increased until E ≫ Δ. At this point,
the system Hamiltonian is dominated by HP, which
represents the encoded optimization problem. At the end
of the evolution, a ground state ofHP represents the lowest
energy configuration for the problem Hamiltonian and thus
a solution to the optimization problem.

III. QUANTUM ANNEALING PROCESSOR

We have built a processor that implements HS using
superconducting flux qubits as effective spins [6,7,23,24].
Figure 1(a) shows a photograph of the processor. Figure 1(c)
shows the circuit schematic of a pair of flux qubits with the
magnetic flux controls Φx

qi and Φx
ccjj. The annealing param-

eter s is controlled with the global bias Φx
ccjjðtÞ (see

Appendix A for the mapping between s and Φx
ccjj and a

description of how Φx
qi is provided for each qubit). The

strength and sign of the inductive coupling between pairs of
qubits is controlled with magnetic fluxΦx

co;ij that is provided
by an individual on-chip digital-to-analog converter for
each coupler [8]. The parameters hi and Jij are thus in situ
tunable, thereby allowing the encoding of a vast number of
problems. The time-dependent energy scales ΔðsÞ and EðsÞ
are calculated from measured qubit parameters and plotted
in Fig. 1(d). We calibrate and correct the individual flux
qubit parameters in our processor to ensure that every qubit
has a close-to-identical Δ and E (the energy gap Δ is
balanced to better than 8% between qubits and E to better
than 5%). See Appendix A for measurements of these
energy scales. The interqubit couplers are calibrated as
described in Ref. [25]. The processor we study here is
mounted on the mixing chamber of a dilution refrigerator
held at temperature T ¼ 12.5 mK.

IV. FERROMAGNETICALLY COUPLED
INSTANCES

The experiments reported herein focus on one of the
eight-qubit unit cells of the larger QA processor as
indicated in Fig. 1(a). The unit cell is isolated by setting
all couplings outside of that subsection to Jij ¼ 0 for all
experiments. We then pose specific HP instances with
strong ferromagnetic (FM) coupling Jij ¼ −2.5 and hi ¼ 0
to that unit cell, as illustrated in Figs. 1(e) and 1(f). These
configurations produce coupled two- and eight-qubit sys-
tems, respectively. The Hamiltonian (1) describes the
behavior of these systems during QA.
Typical observations of entanglement in the quantum

computing literature involve applying interactions between

FIG. 1. (a) Photograph of the QA processor used in this
study. We report measurements performed on the eight-qubit
unit cell indicated. The bodies of the qubits are extended
loops of Nb wiring (highlighted with red rectangles). Inter-
qubit couplers are located at the intersections of the qubit
bodies. (b) Electron micrograph showing the cross section of
a typical portion of the processor circuitry (described in more
detail in Appendix A). (c) Schematic diagram of a pair of
coupled superconducting flux qubits with external control
biases Φx

qi and Φx
ccjj and with flux through the body of the ith

qubit denoted as Φqi. An inductive coupling between the
qubits is tuned with the bias Φx

co;ij. (d) Energy scales ΔðsÞ
and EðsÞ in Hamiltonian (1) calculated from a rf SQUID
model based on the median of independently measured device
parameters for these eight qubits. See Appendix A for more
details. (e),(f) The two- and eight-qubit systems studied were
programmed to have the topologies shown. Qubits are
represented as gold spheres, and interqubit couplers, set to
J ¼ −2.5, are represented as silver lines.

T. LANTING et al. PHYS. REV. X 4, 021041 (2014)

021041-2

Schematic of a pair of superconducting flux 
qubits coupled by a programmable inductor

Copyright © D-Wave Systems Inc.

Next generation architecture signi�cantly enhances connectivity
Chimera C16 - DW 2000Q Pegasus P6 - 680 Qubit Prototype

� most signi�cant architecture change since �rst processor D-Wave One
� enabled by major technology changes in fabrication stack
� have demonstrated P6 prototype
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Processor mounted on dilution refrigerator
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The goal of quantum annealing (QA): model the Hamiltonian
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Technical Description of the D-Wave Quantum Processing Unit

Figure 2.15: A 3 � 3 � 4 Chimera graph. Nodes in an M � N � L Chimera graph represent each of the
2MNL qubits, qi. Edges (connections between nodes) in the graph, Ji,j, indicate couplings that may
be nonzero. As an example, J3,4 may be nonzero because an edge connects qubits 3 and 4, but J2,3
must always be zero because no edge connects qubits 2 and 3. The basic repeating block of Chimera
(a block of 2L variables with complete bipartite connectivity) may be tiled into an M � N lattice. The
left-side variables within each block connect vertically; the right-side variables, horizontally.

Figure 2.16: Each qubit has 6 couplers, 4 within and 2 between unit cells.

D-Wave User Manual 09-1109A-M
Copyright © D-Wave Systems Inc.
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PROBLEM FORMULATION AND OPTIMIZATION RESULTS

CONCLUSIONS AND OUTLOOK
Track clustering with a quantum annealer for primary vertex reconstruction at

hadron colliders

S. Das,� A. J. Wildridge, S. B. Vaidya, and A. Jung†

Department of Physics and Astronomy, Purdue University

(Dated: March 25, 2019)

Clustering of charged particle tracks along the beam axis is the first step in reconstructing the
positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of
primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of
event topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles
to reaching modern hadron collider event complexities and suggest research directions to overcome
each.

INTRODUCTION

Hadron colliders circulate counter-rotating beams of
hadrons in closely packed bunches that cross at desig-
nated interaction points. These interaction points are
instrumented with experimental apparatuses that detect
particles produced at hadron-hadron collisions when the
bunches cross. Reconstructing the positions of these col-
lisions within a bunch crossing, also known as primary
vertices, from the trajectories of charged particles de-
tected by the apparatuses is of paramount importance
for physics analyses. The Large Hadron Collider (LHC)
is a high luminosity collider that produces an average of
20 proton-proton (p-p) collisions at each bunch crossing,
distributed in one dimension along the beam axis. At
one of the LHC interaction points, the Compact Muon
Solenoid experiment (CMS) reconstructs the paths of
charged particles from p-p collisions as tracks detected
by its silicon tracker [1]. Track reconstruction uncertain-
ties obscure which tracks originated together at a primary
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a one-dimensional clustering of tracks by their positions
along the beam axis where they approach it most closely,
also known as the tracks’ z0. In the CMS experiment,
this clustering is done on a classical computer using a
deterministic annealing algorithm that mimics a physi-
cal system approaching its lowest energy state iteratively
through a series of cooling operations [2]. In this Letter,
we demonstrate a method of performing this clustering
in one step on a D-Wave quantum annealer and report
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The D-Wave 2000Q quantum computer, available from
D-Wave Inc., performs computations through quantum
annealing [3–5]. The quantum processing unit (QPU)
has 2048 RF-SQUID flux qubits implemented as super-
conducting niobium loops [6]. Each qubit has a pro-
grammable external magnetic field to bias it. The net-
work of qubits is not fully connected and programmable
couplings have been implemented between 6016 pairs of
qubits. A computational problem is defined by setting
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timization. The D-Wave 2000Q programming model al-
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At the beginning of a typical annealing cycle in the

QPU, a driver Hamiltonian puts all qubits in a superpo-
sition of the computational basis states by introducing a
global energy bias in the transverse x�direction. Anneal-
ing proceeds by lowering this driver Hamiltonian which
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where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land
in the ground state of H
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if this change is su�ciently
gradual, the ground state is unique with a non-zero en-
ergy separation from other states, and the initial state
of the qubits is the ground state of the initial field [7–
9]. These conditions are di�cult to achieve experimen-
tally. We therefore anneal within tens of microseconds
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2

during which quantum tunneling leaves the system in a
low energy configuration at the end of the annealing pro-
cess [10]. We measure the final state of the qubits as
a solution, and repeat several times. The lowest energy
solution is then taken as the best one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version
of this algorithm has been described by V. Kumar, et
al [11]. Further, we distort the Hamiltonian to encour-
age annealing to the ground state given the clustering
characteristics of tracks observed at CMS. Given current
technological limitations, we cannot cluster thousands of
tracks into 20 or more primary vertices as expected at
the LHC. We show how our method scales with event
complexity by testing it on a variety of event topologies
from 2 primary vertices and 10 tracks to 5 primary ver-
tices and 15 tracks, where the positions of vertices and
tracks are drawn from measured distributions at CMS.

Finally, we discuss three obstacles for solving event
complexities relevant in high luminosity hadron collider
experiments and suggest directions of investigation to
overcome each. Extended to two dimensions, the method
be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
ticle showers. Research in this direction may acceler-
ate both quantum information science and high energy
physics instrumentation.
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is the number of tracks, n
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is the number of
vertices, p
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2 [0, 1] is the probability of the ith track to
be associated with the kth vertex, and D(i, j) is a mea-
sure of distance between the reconstructed z0 parameters
of the ith and jth tracks. For one-dimensional clustering,
we find the absolute distance between z
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CMS distributions of track z0 around vertices tend to
cluster D(i, j) near zero. This results in a cluster of en-
ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p

ik

for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p

ik

add up to 1 for all tracks; these are checked
o✏ine by a CPU and marked as invalid.

If each p
ik

is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
14] and can be re-used for multiple events. We need to
program n

V

n
T

logical qubits and n
V

n
T

(n
V

+ n
T

� 2)/2
couplings between them to encode H

p

.

RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].
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• Adiabatic quantum computing exploits:
A system in ground state of a Hamiltonian evolves to 

ground state of perturbed Hamiltonian if perturbation is slow

• Quantum annealing is a practical approximation to adiabatic 
quantum computing in finite time, open system. Finds low-
energy states of interacting spin system using thermally-
assisted quantum tunneling

• D-Wave 2000Q processor contains 2048 artificial spins 
made from Nb RF-SQUIDs. Bias to each spin (hi) and 
couplings between spins (Jij) are programmable

• Physical reasons limit connectivity

• System prepared in ground state of “transverse” 
Hamiltonian. Turned off while turning on problem 
Hamiltonian.

• Spin Hamiltonian trivially shifted to quadratic unconstrained binary optimization (QUBO) form.

• Problem mapped from logical qubits to physical qubits to 
mitigate thermal bit flips using D-Wave’s proprietary algorithms

0 1 2p-p collision number: 

Tracks “cutting” beam axis
at physical positions 

LHC beam axis
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D(i, j)

• Objective function we minimize for clustering tracks to 
collisions is naturally in QUBO form

• pik is binary probability of track i associated with collision k. 
Represented by a qubit

• D(i, j) is measure of distance between tracks i and j. 
Uncertainties of track reconstruction are included

• λ enforces one track associated to one collision. 
Optimal λ = 1.2 × max(D(i, j))

• g(x; m) distorts D(i, j) to increase smaller values, thus 
making intermediate states approximately equidistant 
depending on m. Seen to improve solution convergence

Problem Hamiltonian in QUBO form

Distance measure between tracks

Distortion function to optimize convergence

• Algorithm tested on artificial events drawn from simulated 
and measured LHC distributions of collision positions and 
tracks

• Realistic track reconstruction uncertainties used
CMS Collaboration, JINST 9 (2014) P10009

• Illustration shows quantum annealing output for event 
with 3 collisions and 15 tracks

• Quantum state prepared and annealed 10,000 times.
• Annealing time = 20 µs
• Readout time = 123 µs
• Re-thermalization delay = 21 µs

• 6,825 solutions are valid, i.e. !k pik = 1 for all tracks

• 6,615 solutions are correct. Efficiency = 66%

• Small number of valid secondary solutions where one 
track has been misassociated

• Solution’s pik is track association to p-p collisions. 
Combined with zi and δzi, collision positions can be 
estimated

Energy spectrum of quantum annealing solutions 
for one event with 3 collisions and 15 tracks. 

How is this efficiency distributed?

• We consider an ensemble of 100 events with 3 collisions 
and 15 tracks thrown from measured CMS distributions

• Events with collisions spaced closely compared to track 
uncertainties are difficult for the QPU to resolve

• Results in a distribution of efficiencies with a mean of 42% 
and a standard deviation of 25%

Histogram of QPU convergence efficiency to the 
correct solution for 3 collisions and 15 tracks using 
100 events

How does solution finding efficiency scale?

• We repeated investigation for seven event topologies: 

• Complexity characterized by number of logical qubits

• Increasing complexity results in lower solution finding 
efficiency. Implies more annealing cycles needed. 

• For efficiency ϵ, to obtain at least 1 correct answer with 
95% certainty, we need N samples:

3

As an illustration of the algorithm, consider an event
with 3 vertices where 5 tracks emanate from each vertex.
This requires 45 logical qubits to encode. The biases
and couplings between them are obtained from Eq. 4 in
QUBO form. It takes 8 ms to program them into the
QPU. Sampling the QPU for solutions consists of an-
nealing as described in Eq. 3, readout of the qubits, and
a delay for re-thermalizing the qubits to mitigate inter-
sample correlations. Annealing is allowed for 20 µs by
default. Readout takes 123 µs, and the delay is set to 21
µs. 10,000 sampling cycles are performed. The energy
spectrum of the solutions, of which 6,825 are valid (where
p

ik

add up to 1 for every track) is shown in Fig. 1. The
energy scale is set by B(1) as defined in Eq. 3, which is
6h GHz in the QPU used for this study. Of the valid so-
lutions, 6,615 have landed on the lowest energy solution,
marked as “Solution 1” in the figure. On investigating
the qubit states, we find that the lowest energy solution
corresponds to the correct clustering of the tracks with
their respective vertices. Thus, the e�ciency of finding
the correct solution is noted as 66%. A small number
of valid solutions correspond to “Solution 2” where one
track has been misassociated with a vertex. Further mis-
associations result in higher energy valid solutions in the
spectrum.

Next, we consider an ensemble of 100 such events with
3 primary vertices and 15 tracks thrown from measured
CMS distributions. Events with vertices spaced closely
together compared to the spread of their tracks are dif-
ficult for the QPU to solve correctly and result in lower
convergence e�ciencies than events where vertices are
widely separated. This results in a distribution of ef-
ficiencies shown in Fig. 2 with a mean of 42% and a
standard deviation of 25%.

To characterize how this e�ciency depends on event
complexity, we repeated our investigation for six other
event topologies: 2 vertices and 10 tracks, 2 vertices 16
tracks, 3 vertices 9 tracks, 4 vertices 12 tracks, 4 vertices
16 tracks, and 5 vertices 15 tracks. With increasing com-
plexity, measured by the number of logical qubits needed,
we observe a decreasing e�ciency shown in Fig. 3. The
trend has been empirically fitted to a quadratic form.

We determine the time it takes to solve an event on
the QPU by finding the number of samples needed to
obtain at least 1 correct answer with 95% certainty. This
is estimated from the convergence e�ciency. Assuming
a binomial distribution around the mean convergence ef-
ficiency ✏, we calculate the number of samples needed to
be

N = log1�✏

0.05. (7)

Thus, while we need 2 samples (330 µs) for events with
2 vertices and 10 or 16 tracks, and 3 samples (490 µs)
for events with 3 vertices and 9 tracks, we need approx-
imately 10,000 samples (1.6 s) for events with 5 vertices
and 15 tracks.

FIG. 1. The energy spectrum of solutions for one event with
3 primary vertices and 15 tracks explored by the QPU with
10,000 samples. Energies corresponding to valid solutions,
where the pik add up to 1 for every track, are plotted with
solid lines while invalid solutions are plotted with dashed lines.
The best and next-to-best valid solutions are indicated as So-
lutions 1 and 2, respectively. For clarity, the histogram is
binned by 1 GHz below 20 GHz, by 10 GHz for 20 – 30 GHz,
and by 50 GHz above 30 GHz. Events in 10 (50) GHz bins
are normalized by 10 (50).

FIG. 2. A histogram of QPU convergence e�ciency to the
correct solution for the case of 3 primary vertices and 15 tracks
using 100 events.

Dependence of solution finding efficiency on track 
clustering problem complexity measured in the 
number of logical qubits used

Track clustering, first step of vertexing at the LHC, finds 
a  natural implementation on a quantum annealer.

• Track association to p-p collision recovered
• p-p collision positions reconstructed from track 

positions that belong to a collision

LHC produces 1000s of tracks, 20 or more collisions per 
bunch-crossing. Three obstacles to scaling up:

• Obstacle 1. Decreasing solution finding efficiency with 
event complexity. Research paths:

• Find theoretical model of how energy spacing between 
states affect annealing to the ground state

• Modified annealing schedule to kick system out of local 
minima with wide tunneling barriers

• Obstacle 2. Failure of graph embedding from logical to 
physical qubits. Research paths:

• Customize graph embedding algorithm
• Delay annealing of long chains of qubits
• D-Wave Pegasus processor with 5,000+ qubits and 15 

connections per qubit will alleviate this

• Obstacle 3. Limited numbers of qubits. Research path:
• Hierarchical application of clustering algorithm
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Figure 1: Illustration of the penalty D(i, j) imposed by the problem Hamiltonian in Eq. 4 when widely separated tracks in z0, zi and zj are
associated with the same p-p collision. Collisions are labeled by integers from 0 to nV � 1. The algorithm solves for the association matrix
pik where i is the track index and k is the collision index.

multaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land in
the ground state of H

p

if this change is su�ciently gradual,
the ground state is unique with a non-zero energy separa-
tion from other states, and the initial state of the qubits is
the ground state of the initial field [6, 7, 8]. These condi-
tions are di�cult to achieve experimentally. We therefore
anneal within tens of microseconds during which quantum
tunneling leaves the system in a low energy configuration
at the end of the annealing process [9]. We measure the
final state of the qubits as a solution, and repeat several
times. The lowest energy solution is then taken as the best
one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version of
this algorithm has been described by V. Kumar, et al [10].
Further, we distort the Hamiltonian to encourage anneal-
ing to the ground state given the clustering characteristics
of tracks observed at CMS. Given current technological
limitations, we cannot cluster thousands of tracks into 20
or more primary vertices as expected at the LHC. We show
how our method scales with event complexity by testing
it on a variety of event topologies from 2 primary ver-
tices and 10 tracks to 5 primary vertices and 15 tracks,
where the positions of vertices and tracks are drawn from
measured distributions at CMS. Our algorithm is not a
quantum-classical hybrid, and relies entirely on thermally
assisted quantum tunneling. This allows us to benchmark

it clearly against simulated annealing running on a mod-
ern CPU in the same period of time as a sampling cycle
on the QPU.

Finally, we discuss three directions of research to im-
prove this algorithm to solve event complexities relevant
in high luminosity hadron collider experiments. Extended
to two dimensions, the method can be used for other high
energy physics applications like clustering energy deposits
in calorimeters to identify particle showers. Research in
this direction may accelerate both quantum information
science and high energy physics instrumentation.

2. Formulation

For track clustering, we seek the ground state of the
problem Hamiltonian

H
p

=
nVX

k

nTX

i

nTX

j>i

p
ik

p
jk

g(D(i, j); m)

+�

nTX

i

 
1 �

nVX

k

p
ik

!2

,

(4)

where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to be
associated with the kth vertex, and D(i, j) is a measure of
distance between the reconstructed z0 parameters of the
ith and jth tracks.

As in any clustering algorithm, a density threshold of
tracks must be set that determines n

V

. In this paper, we
order the tracks in z0 and count the number of gaps greater
than a threshold of 5 mm. n

V

is set to this number plus
one.

For D(i, j), we find the absolute distance between z
i

and z
j

divided by the quadrature sum of the measurement
uncertainties �z

i

and �z
j

to be an e↵ective measure:

D(i, j) =
|z

i

� z
j

|q
�z2

i

+ �z2
j

. (5)

CMS distributions of track z0 around vertices tend to clus-
ter D(i, j) near zero. This results in a cluster of energy
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ABSTRACT: Clustering of charged particle tracks along the beam axis is the first step in reconstructing the positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a 
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of event 
topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles to reaching modern hadron collider event complexities and suggest research directions to overcome each.

PRIMARY VERTEXING AT THE LARGE HADRON COLLIDER 

~ 8 cm

Representative event in CMS with charged particle tracks from 78 collisions

• The LHC circulates protons inside its beam-pipes in 
bunches. Each bunch contains 100 billion protons 
(2012 run)

• When counter-rotating bunches cross, only 
~ 20 protons collide

• Each p-p collision emits charged particles that are 
detected as tracks by experiments like the Compact 
Muon Solenoid (CMS)

PRIMARY VERTEXING:
Which tracks come from which p-p collision?
Where exactly are the p-p collision positions?The CMS apparatus with person for scale

THE D-WAVE 2048 QUBIT QUANTUM COMPUTER

of the spins, respectively, and the biases hi and couplings
Jij encode a particular optimization problem. The time-
dependent variation of Δ and E is parametrized by s≡ t=tf
with time t ∈ ½0; tf" and total run (anneal) time tf. QA is
performed by first setting Δ ≫ E, which results in a ground
state into which the spins can be easily initialized [6]. Then
Δ is reduced and E is increased until E ≫ Δ. At this point,
the system Hamiltonian is dominated by HP, which
represents the encoded optimization problem. At the end
of the evolution, a ground state ofHP represents the lowest
energy configuration for the problem Hamiltonian and thus
a solution to the optimization problem.

III. QUANTUM ANNEALING PROCESSOR

We have built a processor that implements HS using
superconducting flux qubits as effective spins [6,7,23,24].
Figure 1(a) shows a photograph of the processor. Figure 1(c)
shows the circuit schematic of a pair of flux qubits with the
magnetic flux controls Φx

qi and Φx
ccjj. The annealing param-

eter s is controlled with the global bias Φx
ccjjðtÞ (see

Appendix A for the mapping between s and Φx
ccjj and a

description of how Φx
qi is provided for each qubit). The

strength and sign of the inductive coupling between pairs of
qubits is controlled with magnetic fluxΦx

co;ij that is provided
by an individual on-chip digital-to-analog converter for
each coupler [8]. The parameters hi and Jij are thus in situ
tunable, thereby allowing the encoding of a vast number of
problems. The time-dependent energy scales ΔðsÞ and EðsÞ
are calculated from measured qubit parameters and plotted
in Fig. 1(d). We calibrate and correct the individual flux
qubit parameters in our processor to ensure that every qubit
has a close-to-identical Δ and E (the energy gap Δ is
balanced to better than 8% between qubits and E to better
than 5%). See Appendix A for measurements of these
energy scales. The interqubit couplers are calibrated as
described in Ref. [25]. The processor we study here is
mounted on the mixing chamber of a dilution refrigerator
held at temperature T ¼ 12.5 mK.

IV. FERROMAGNETICALLY COUPLED
INSTANCES

The experiments reported herein focus on one of the
eight-qubit unit cells of the larger QA processor as
indicated in Fig. 1(a). The unit cell is isolated by setting
all couplings outside of that subsection to Jij ¼ 0 for all
experiments. We then pose specific HP instances with
strong ferromagnetic (FM) coupling Jij ¼ −2.5 and hi ¼ 0
to that unit cell, as illustrated in Figs. 1(e) and 1(f). These
configurations produce coupled two- and eight-qubit sys-
tems, respectively. The Hamiltonian (1) describes the
behavior of these systems during QA.
Typical observations of entanglement in the quantum

computing literature involve applying interactions between

FIG. 1. (a) Photograph of the QA processor used in this
study. We report measurements performed on the eight-qubit
unit cell indicated. The bodies of the qubits are extended
loops of Nb wiring (highlighted with red rectangles). Inter-
qubit couplers are located at the intersections of the qubit
bodies. (b) Electron micrograph showing the cross section of
a typical portion of the processor circuitry (described in more
detail in Appendix A). (c) Schematic diagram of a pair of
coupled superconducting flux qubits with external control
biases Φx

qi and Φx
ccjj and with flux through the body of the ith

qubit denoted as Φqi. An inductive coupling between the
qubits is tuned with the bias Φx

co;ij. (d) Energy scales ΔðsÞ
and EðsÞ in Hamiltonian (1) calculated from a rf SQUID
model based on the median of independently measured device
parameters for these eight qubits. See Appendix A for more
details. (e),(f) The two- and eight-qubit systems studied were
programmed to have the topologies shown. Qubits are
represented as gold spheres, and interqubit couplers, set to
J ¼ −2.5, are represented as silver lines.

T. LANTING et al. PHYS. REV. X 4, 021041 (2014)

021041-2

Schematic of a pair of superconducting flux 
qubits coupled by a programmable inductor

Copyright © D-Wave Systems Inc.

Next generation architecture signi�cantly enhances connectivity
Chimera C16 - DW 2000Q Pegasus P6 - 680 Qubit Prototype

� most signi�cant architecture change since �rst processor D-Wave One
� enabled by major technology changes in fabrication stack
� have demonstrated P6 prototype
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Processor mounted on dilution refrigerator
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The goal of quantum annealing (QA): model the Hamiltonian
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Technical Description of the D-Wave Quantum Processing Unit

Figure 2.15: A 3 � 3 � 4 Chimera graph. Nodes in an M � N � L Chimera graph represent each of the
2MNL qubits, qi. Edges (connections between nodes) in the graph, Ji,j, indicate couplings that may
be nonzero. As an example, J3,4 may be nonzero because an edge connects qubits 3 and 4, but J2,3
must always be zero because no edge connects qubits 2 and 3. The basic repeating block of Chimera
(a block of 2L variables with complete bipartite connectivity) may be tiled into an M � N lattice. The
left-side variables within each block connect vertically; the right-side variables, horizontally.

Figure 2.16: Each qubit has 6 couplers, 4 within and 2 between unit cells.

D-Wave User Manual 09-1109A-M
Copyright © D-Wave Systems Inc.
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Connectivity between qubits

PROBLEM FORMULATION AND OPTIMIZATION RESULTS

CONCLUSIONS AND OUTLOOK
Track clustering with a quantum annealer for primary vertex reconstruction at

hadron colliders

S. Das,� A. J. Wildridge, S. B. Vaidya, and A. Jung†

Department of Physics and Astronomy, Purdue University

(Dated: March 25, 2019)

Clustering of charged particle tracks along the beam axis is the first step in reconstructing the
positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of
primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of
event topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles
to reaching modern hadron collider event complexities and suggest research directions to overcome
each.

INTRODUCTION

Hadron colliders circulate counter-rotating beams of
hadrons in closely packed bunches that cross at desig-
nated interaction points. These interaction points are
instrumented with experimental apparatuses that detect
particles produced at hadron-hadron collisions when the
bunches cross. Reconstructing the positions of these col-
lisions within a bunch crossing, also known as primary
vertices, from the trajectories of charged particles de-
tected by the apparatuses is of paramount importance
for physics analyses. The Large Hadron Collider (LHC)
is a high luminosity collider that produces an average of
20 proton-proton (p-p) collisions at each bunch crossing,
distributed in one dimension along the beam axis. At
one of the LHC interaction points, the Compact Muon
Solenoid experiment (CMS) reconstructs the paths of
charged particles from p-p collisions as tracks detected
by its silicon tracker [1]. Track reconstruction uncertain-
ties obscure which tracks originated together at a primary
vertex. Thus, primary vertex reconstruction begins with
a one-dimensional clustering of tracks by their positions
along the beam axis where they approach it most closely,
also known as the tracks’ z0. In the CMS experiment,
this clustering is done on a classical computer using a
deterministic annealing algorithm that mimics a physi-
cal system approaching its lowest energy state iteratively
through a series of cooling operations [2]. In this Letter,
we demonstrate a method of performing this clustering
in one step on a D-Wave quantum annealer and report
preliminary results.

The D-Wave 2000Q quantum computer, available from
D-Wave Inc., performs computations through quantum
annealing [3–5]. The quantum processing unit (QPU)
has 2048 RF-SQUID flux qubits implemented as super-
conducting niobium loops [6]. Each qubit has a pro-
grammable external magnetic field to bias it. The net-
work of qubits is not fully connected and programmable
couplings have been implemented between 6016 pairs of
qubits. A computational problem is defined by setting
the biases (h

i

) and couplings (J
ij

) such that the ground

state of the qubits’ Hamiltonian corresponds to the solu-
tion. We call this the “problem Hamiltonian” (H

p

)

H
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X
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, (1)

where �i

z

is a spin projection observable of the ith qubit
with eigenvalues +1 and -1. (This z direction is not
related to the beam axis at CMS.) It may be trivially
mapped to a bit observable q

i

with eigenvalues 0 and
1 through the shift 2q

i

= �i

z

+ I, where I is the iden-
tity matrix. The problem Hamiltonian may then be ex-
pressed for quadratic unconstrained binary optimization
(QUBO) as

H
p
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X
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i

q
i

+
X

i

X
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b
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q
i
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, (2)

notwithstanding energy o↵sets that are irrelevant for op-
timization. The D-Wave 2000Q programming model al-
lows us to specify a problem in QUBO form by specifying
a

i

and b
ij

.
At the beginning of a typical annealing cycle in the

QPU, a driver Hamiltonian puts all qubits in a superpo-
sition of the computational basis states by introducing a
global energy bias in the transverse x�direction. Anneal-
ing proceeds by lowering this driver Hamiltonian which
simultaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land
in the ground state of H

p

if this change is su�ciently
gradual, the ground state is unique with a non-zero en-
ergy separation from other states, and the initial state
of the qubits is the ground state of the initial field [7–
9]. These conditions are di�cult to achieve experimen-
tally. We therefore anneal within tens of microseconds
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each.

INTRODUCTION

Hadron colliders circulate counter-rotating beams of
hadrons in closely packed bunches that cross at desig-
nated interaction points. These interaction points are
instrumented with experimental apparatuses that detect
particles produced at hadron-hadron collisions when the
bunches cross. Reconstructing the positions of these col-
lisions within a bunch crossing, also known as primary
vertices, from the trajectories of charged particles de-
tected by the apparatuses is of paramount importance
for physics analyses. The Large Hadron Collider (LHC)
is a high luminosity collider that produces an average of
20 proton-proton (p-p) collisions at each bunch crossing,
distributed in one dimension along the beam axis. At
one of the LHC interaction points, the Compact Muon
Solenoid experiment (CMS) reconstructs the paths of
charged particles from p-p collisions as tracks detected
by its silicon tracker [1]. Track reconstruction uncertain-
ties obscure which tracks originated together at a primary
vertex. Thus, primary vertex reconstruction begins with
a one-dimensional clustering of tracks by their positions
along the beam axis where they approach it most closely,
also known as the tracks’ z0. In the CMS experiment,
this clustering is done on a classical computer using a
deterministic annealing algorithm that mimics a physi-
cal system approaching its lowest energy state iteratively
through a series of cooling operations [2]. In this Letter,
we demonstrate a method of performing this clustering
in one step on a D-Wave quantum annealer and report
preliminary results.

The D-Wave 2000Q quantum computer, available from
D-Wave Inc., performs computations through quantum
annealing [3–5]. The quantum processing unit (QPU)
has 2048 RF-SQUID flux qubits implemented as super-
conducting niobium loops [6]. Each qubit has a pro-
grammable external magnetic field to bias it. The net-
work of qubits is not fully connected and programmable
couplings have been implemented between 6016 pairs of
qubits. A computational problem is defined by setting
the biases (h

i

) and couplings (J
ij

) such that the ground

state of the qubits’ Hamiltonian corresponds to the solu-
tion. We call this the “problem Hamiltonian” (H

p

)

H
p

=
X

i

h
i

�i

z

+
X

i

X

j>i

J
ij

�i

z

�j

z

, (1)

where �i

z

is a spin projection observable of the ith qubit
with eigenvalues +1 and -1. (This z direction is not
related to the beam axis at CMS.) It may be trivially
mapped to a bit observable q

i

with eigenvalues 0 and
1 through the shift 2q
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+ I, where I is the iden-
tity matrix. The problem Hamiltonian may then be ex-
pressed for quadratic unconstrained binary optimization
(QUBO) as
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notwithstanding energy o↵sets that are irrelevant for op-
timization. The D-Wave 2000Q programming model al-
lows us to specify a problem in QUBO form by specifying
a

i

and b
ij

.
At the beginning of a typical annealing cycle in the

QPU, a driver Hamiltonian puts all qubits in a superpo-
sition of the computational basis states by introducing a
global energy bias in the transverse x�direction. Anneal-
ing proceeds by lowering this driver Hamiltonian which
simultaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land
in the ground state of H

p

if this change is su�ciently
gradual, the ground state is unique with a non-zero en-
ergy separation from other states, and the initial state
of the qubits is the ground state of the initial field [7–
9]. These conditions are di�cult to achieve experimen-
tally. We therefore anneal within tens of microseconds

2

during which quantum tunneling leaves the system in a
low energy configuration at the end of the annealing pro-
cess [10]. We measure the final state of the qubits as
a solution, and repeat several times. The lowest energy
solution is then taken as the best one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version
of this algorithm has been described by V. Kumar, et
al [11]. Further, we distort the Hamiltonian to encour-
age annealing to the ground state given the clustering
characteristics of tracks observed at CMS. Given current
technological limitations, we cannot cluster thousands of
tracks into 20 or more primary vertices as expected at
the LHC. We show how our method scales with event
complexity by testing it on a variety of event topologies
from 2 primary vertices and 10 tracks to 5 primary ver-
tices and 15 tracks, where the positions of vertices and
tracks are drawn from measured distributions at CMS.

Finally, we discuss three obstacles for solving event
complexities relevant in high luminosity hadron collider
experiments and suggest directions of investigation to
overcome each. Extended to two dimensions, the method
be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
ticle showers. Research in this direction may acceler-
ate both quantum information science and high energy
physics instrumentation.

FORMULATION

For track clustering, we seek the ground state of the
problem Hamiltonian
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where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to
be associated with the kth vertex, and D(i, j) is a mea-
sure of distance between the reconstructed z0 parameters
of the ith and jth tracks. For one-dimensional clustering,
we find the absolute distance between z

i

and z
j

divided
by the quadrature sum of the measurement uncertainties

�z
i

and �z
j

to be an e↵ective measure:
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+ �z2
j

. (5)

CMS distributions of track z0 around vertices tend to
cluster D(i, j) near zero. This results in a cluster of en-
ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p

ik

for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p

ik

add up to 1 for all tracks; these are checked
o✏ine by a CPU and marked as invalid.

If each p
ik

is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
14] and can be re-used for multiple events. We need to
program n

V

n
T

logical qubits and n
V

n
T

(n
V

+ n
T

� 2)/2
couplings between them to encode H

p

.

RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].
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a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].
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cluster D(i, j) near zero. This results in a cluster of en-
ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)
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where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p
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for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p
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o✏ine by a CPU and marked as invalid.
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is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
14] and can be re-used for multiple events. We need to
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RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].

• Adiabatic quantum computing exploits:
A system in ground state of a Hamiltonian evolves to 

ground state of perturbed Hamiltonian if perturbation is slow

• Quantum annealing is a practical approximation to adiabatic 
quantum computing in finite time, open system. Finds low-
energy states of interacting spin system using thermally-
assisted quantum tunneling

• D-Wave 2000Q processor contains 2048 artificial spins 
made from Nb RF-SQUIDs. Bias to each spin (hi) and 
couplings between spins (Jij) are programmable

• Physical reasons limit connectivity

• System prepared in ground state of “transverse” 
Hamiltonian. Turned off while turning on problem 
Hamiltonian.

• Spin Hamiltonian trivially shifted to quadratic unconstrained binary optimization (QUBO) form.

• Problem mapped from logical qubits to physical qubits to 
mitigate thermal bit flips using D-Wave’s proprietary algorithms

0 1 2p-p collision number: 

Tracks “cutting” beam axis
at physical positions 

LHC beam axis

pi0 pj0

zi zj

D(i, j)

• Objective function we minimize for clustering tracks to 
collisions is naturally in QUBO form

• pik is binary probability of track i associated with collision k. 
Represented by a qubit

• D(i, j) is measure of distance between tracks i and j. 
Uncertainties of track reconstruction are included

• λ enforces one track associated to one collision. 
Optimal λ = 1.2 × max(D(i, j))

• g(x; m) distorts D(i, j) to increase smaller values, thus 
making intermediate states approximately equidistant 
depending on m. Seen to improve solution convergence

Problem Hamiltonian in QUBO form

Distance measure between tracks

Distortion function to optimize convergence

• Algorithm tested on artificial events drawn from simulated 
and measured LHC distributions of collision positions and 
tracks

• Realistic track reconstruction uncertainties used
CMS Collaboration, JINST 9 (2014) P10009

• Illustration shows quantum annealing output for event 
with 3 collisions and 15 tracks

• Quantum state prepared and annealed 10,000 times.
• Annealing time = 20 µs
• Readout time = 123 µs
• Re-thermalization delay = 21 µs

• 6,825 solutions are valid, i.e. !k pik = 1 for all tracks

• 6,615 solutions are correct. Efficiency = 66%

• Small number of valid secondary solutions where one 
track has been misassociated

• Solution’s pik is track association to p-p collisions. 
Combined with zi and δzi, collision positions can be 
estimated

Energy spectrum of quantum annealing solutions 
for one event with 3 collisions and 15 tracks. 

How is this efficiency distributed?

• We consider an ensemble of 100 events with 3 collisions 
and 15 tracks thrown from measured CMS distributions

• Events with collisions spaced closely compared to track 
uncertainties are difficult for the QPU to resolve

• Results in a distribution of efficiencies with a mean of 42% 
and a standard deviation of 25%

Histogram of QPU convergence efficiency to the 
correct solution for 3 collisions and 15 tracks using 
100 events

How does solution finding efficiency scale?

• We repeated investigation for seven event topologies: 

• Complexity characterized by number of logical qubits

• Increasing complexity results in lower solution finding 
efficiency. Implies more annealing cycles needed. 

• For efficiency ϵ, to obtain at least 1 correct answer with 
95% certainty, we need N samples:

3

As an illustration of the algorithm, consider an event
with 3 vertices where 5 tracks emanate from each vertex.
This requires 45 logical qubits to encode. The biases
and couplings between them are obtained from Eq. 4 in
QUBO form. It takes 8 ms to program them into the
QPU. Sampling the QPU for solutions consists of an-
nealing as described in Eq. 3, readout of the qubits, and
a delay for re-thermalizing the qubits to mitigate inter-
sample correlations. Annealing is allowed for 20 µs by
default. Readout takes 123 µs, and the delay is set to 21
µs. 10,000 sampling cycles are performed. The energy
spectrum of the solutions, of which 6,825 are valid (where
p

ik

add up to 1 for every track) is shown in Fig. 1. The
energy scale is set by B(1) as defined in Eq. 3, which is
6h GHz in the QPU used for this study. Of the valid so-
lutions, 6,615 have landed on the lowest energy solution,
marked as “Solution 1” in the figure. On investigating
the qubit states, we find that the lowest energy solution
corresponds to the correct clustering of the tracks with
their respective vertices. Thus, the e�ciency of finding
the correct solution is noted as 66%. A small number
of valid solutions correspond to “Solution 2” where one
track has been misassociated with a vertex. Further mis-
associations result in higher energy valid solutions in the
spectrum.

Next, we consider an ensemble of 100 such events with
3 primary vertices and 15 tracks thrown from measured
CMS distributions. Events with vertices spaced closely
together compared to the spread of their tracks are dif-
ficult for the QPU to solve correctly and result in lower
convergence e�ciencies than events where vertices are
widely separated. This results in a distribution of ef-
ficiencies shown in Fig. 2 with a mean of 42% and a
standard deviation of 25%.

To characterize how this e�ciency depends on event
complexity, we repeated our investigation for six other
event topologies: 2 vertices and 10 tracks, 2 vertices 16
tracks, 3 vertices 9 tracks, 4 vertices 12 tracks, 4 vertices
16 tracks, and 5 vertices 15 tracks. With increasing com-
plexity, measured by the number of logical qubits needed,
we observe a decreasing e�ciency shown in Fig. 3. The
trend has been empirically fitted to a quadratic form.

We determine the time it takes to solve an event on
the QPU by finding the number of samples needed to
obtain at least 1 correct answer with 95% certainty. This
is estimated from the convergence e�ciency. Assuming
a binomial distribution around the mean convergence ef-
ficiency ✏, we calculate the number of samples needed to
be

N = log1�✏

0.05. (7)

Thus, while we need 2 samples (330 µs) for events with
2 vertices and 10 or 16 tracks, and 3 samples (490 µs)
for events with 3 vertices and 9 tracks, we need approx-
imately 10,000 samples (1.6 s) for events with 5 vertices
and 15 tracks.

FIG. 1. The energy spectrum of solutions for one event with
3 primary vertices and 15 tracks explored by the QPU with
10,000 samples. Energies corresponding to valid solutions,
where the pik add up to 1 for every track, are plotted with
solid lines while invalid solutions are plotted with dashed lines.
The best and next-to-best valid solutions are indicated as So-
lutions 1 and 2, respectively. For clarity, the histogram is
binned by 1 GHz below 20 GHz, by 10 GHz for 20 – 30 GHz,
and by 50 GHz above 30 GHz. Events in 10 (50) GHz bins
are normalized by 10 (50).

FIG. 2. A histogram of QPU convergence e�ciency to the
correct solution for the case of 3 primary vertices and 15 tracks
using 100 events.

Dependence of solution finding efficiency on track 
clustering problem complexity measured in the 
number of logical qubits used

Track clustering, first step of vertexing at the LHC, finds 
a  natural implementation on a quantum annealer.

• Track association to p-p collision recovered
• p-p collision positions reconstructed from track 

positions that belong to a collision

LHC produces 1000s of tracks, 20 or more collisions per 
bunch-crossing. Three obstacles to scaling up:

• Obstacle 1. Decreasing solution finding efficiency with 
event complexity. Research paths:

• Find theoretical model of how energy spacing between 
states affect annealing to the ground state

• Modified annealing schedule to kick system out of local 
minima with wide tunneling barriers

• Obstacle 2. Failure of graph embedding from logical to 
physical qubits. Research paths:

• Customize graph embedding algorithm
• Delay annealing of long chains of qubits
• D-Wave Pegasus processor with 5,000+ qubits and 15 

connections per qubit will alleviate this

• Obstacle 3. Limited numbers of qubits. Research path:
• Hierarchical application of clustering algorithm
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Figure 1: Illustration of the penalty D(i, j) imposed by the problem Hamiltonian in Eq. 4 when widely separated tracks in z0, zi and zj are
associated with the same p-p collision. Collisions are labeled by integers from 0 to nV � 1. The algorithm solves for the association matrix
pik where i is the track index and k is the collision index.

multaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land in
the ground state of H

p

if this change is su�ciently gradual,
the ground state is unique with a non-zero energy separa-
tion from other states, and the initial state of the qubits is
the ground state of the initial field [6, 7, 8]. These condi-
tions are di�cult to achieve experimentally. We therefore
anneal within tens of microseconds during which quantum
tunneling leaves the system in a low energy configuration
at the end of the annealing process [9]. We measure the
final state of the qubits as a solution, and repeat several
times. The lowest energy solution is then taken as the best
one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version of
this algorithm has been described by V. Kumar, et al [10].
Further, we distort the Hamiltonian to encourage anneal-
ing to the ground state given the clustering characteristics
of tracks observed at CMS. Given current technological
limitations, we cannot cluster thousands of tracks into 20
or more primary vertices as expected at the LHC. We show
how our method scales with event complexity by testing
it on a variety of event topologies from 2 primary ver-
tices and 10 tracks to 5 primary vertices and 15 tracks,
where the positions of vertices and tracks are drawn from
measured distributions at CMS. Our algorithm is not a
quantum-classical hybrid, and relies entirely on thermally
assisted quantum tunneling. This allows us to benchmark

it clearly against simulated annealing running on a mod-
ern CPU in the same period of time as a sampling cycle
on the QPU.

Finally, we discuss three directions of research to im-
prove this algorithm to solve event complexities relevant
in high luminosity hadron collider experiments. Extended
to two dimensions, the method can be used for other high
energy physics applications like clustering energy deposits
in calorimeters to identify particle showers. Research in
this direction may accelerate both quantum information
science and high energy physics instrumentation.

2. Formulation

For track clustering, we seek the ground state of the
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where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to be
associated with the kth vertex, and D(i, j) is a measure of
distance between the reconstructed z0 parameters of the
ith and jth tracks.

As in any clustering algorithm, a density threshold of
tracks must be set that determines n

V

. In this paper, we
order the tracks in z0 and count the number of gaps greater
than a threshold of 5 mm. n

V

is set to this number plus
one.

For D(i, j), we find the absolute distance between z
i

and z
j

divided by the quadrature sum of the measurement
uncertainties �z
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and �z
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to be an e↵ective measure:

D(i, j) =
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. (5)

CMS distributions of track z0 around vertices tend to clus-
ter D(i, j) near zero. This results in a cluster of energy

2

๏ Clustering problem naturally expressed in QUBO form (V. Kumar, et. al. “Quantum annealing for combinatorial clustering” Quantum Inf. Processing 17 (2018) 39)

Coupling terms

➡ Probability (0 or 1) of ith track to have come from kth p-p collision is pik. Element pik is represented by a qubit



➡ Coupling between two qubits pik and pjk that represent association of two tracks to same p-p collision k is a distance 
measure between the tracks D(i, j). Punish associations corresponding to widely separated tracks

➡ D(i, j) is Manhattan distance attenuated by uncertainty

Track clustering QUBO formulation for D-Wave 6
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ABSTRACT: Clustering of charged particle tracks along the beam axis is the first step in reconstructing the positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a 
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of event 
topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles to reaching modern hadron collider event complexities and suggest research directions to overcome each.

PRIMARY VERTEXING AT THE LARGE HADRON COLLIDER 

~ 8 cm

Representative event in CMS with charged particle tracks from 78 collisions

• The LHC circulates protons inside its beam-pipes in 
bunches. Each bunch contains 100 billion protons 
(2012 run)

• When counter-rotating bunches cross, only 
~ 20 protons collide

• Each p-p collision emits charged particles that are 
detected as tracks by experiments like the Compact 
Muon Solenoid (CMS)

PRIMARY VERTEXING:
Which tracks come from which p-p collision?
Where exactly are the p-p collision positions?The CMS apparatus with person for scale

THE D-WAVE 2048 QUBIT QUANTUM COMPUTER

of the spins, respectively, and the biases hi and couplings
Jij encode a particular optimization problem. The time-
dependent variation of Δ and E is parametrized by s≡ t=tf
with time t ∈ ½0; tf" and total run (anneal) time tf. QA is
performed by first setting Δ ≫ E, which results in a ground
state into which the spins can be easily initialized [6]. Then
Δ is reduced and E is increased until E ≫ Δ. At this point,
the system Hamiltonian is dominated by HP, which
represents the encoded optimization problem. At the end
of the evolution, a ground state ofHP represents the lowest
energy configuration for the problem Hamiltonian and thus
a solution to the optimization problem.

III. QUANTUM ANNEALING PROCESSOR

We have built a processor that implements HS using
superconducting flux qubits as effective spins [6,7,23,24].
Figure 1(a) shows a photograph of the processor. Figure 1(c)
shows the circuit schematic of a pair of flux qubits with the
magnetic flux controls Φx

qi and Φx
ccjj. The annealing param-

eter s is controlled with the global bias Φx
ccjjðtÞ (see

Appendix A for the mapping between s and Φx
ccjj and a

description of how Φx
qi is provided for each qubit). The

strength and sign of the inductive coupling between pairs of
qubits is controlled with magnetic fluxΦx

co;ij that is provided
by an individual on-chip digital-to-analog converter for
each coupler [8]. The parameters hi and Jij are thus in situ
tunable, thereby allowing the encoding of a vast number of
problems. The time-dependent energy scales ΔðsÞ and EðsÞ
are calculated from measured qubit parameters and plotted
in Fig. 1(d). We calibrate and correct the individual flux
qubit parameters in our processor to ensure that every qubit
has a close-to-identical Δ and E (the energy gap Δ is
balanced to better than 8% between qubits and E to better
than 5%). See Appendix A for measurements of these
energy scales. The interqubit couplers are calibrated as
described in Ref. [25]. The processor we study here is
mounted on the mixing chamber of a dilution refrigerator
held at temperature T ¼ 12.5 mK.

IV. FERROMAGNETICALLY COUPLED
INSTANCES

The experiments reported herein focus on one of the
eight-qubit unit cells of the larger QA processor as
indicated in Fig. 1(a). The unit cell is isolated by setting
all couplings outside of that subsection to Jij ¼ 0 for all
experiments. We then pose specific HP instances with
strong ferromagnetic (FM) coupling Jij ¼ −2.5 and hi ¼ 0
to that unit cell, as illustrated in Figs. 1(e) and 1(f). These
configurations produce coupled two- and eight-qubit sys-
tems, respectively. The Hamiltonian (1) describes the
behavior of these systems during QA.
Typical observations of entanglement in the quantum

computing literature involve applying interactions between

FIG. 1. (a) Photograph of the QA processor used in this
study. We report measurements performed on the eight-qubit
unit cell indicated. The bodies of the qubits are extended
loops of Nb wiring (highlighted with red rectangles). Inter-
qubit couplers are located at the intersections of the qubit
bodies. (b) Electron micrograph showing the cross section of
a typical portion of the processor circuitry (described in more
detail in Appendix A). (c) Schematic diagram of a pair of
coupled superconducting flux qubits with external control
biases Φx

qi and Φx
ccjj and with flux through the body of the ith

qubit denoted as Φqi. An inductive coupling between the
qubits is tuned with the bias Φx

co;ij. (d) Energy scales ΔðsÞ
and EðsÞ in Hamiltonian (1) calculated from a rf SQUID
model based on the median of independently measured device
parameters for these eight qubits. See Appendix A for more
details. (e),(f) The two- and eight-qubit systems studied were
programmed to have the topologies shown. Qubits are
represented as gold spheres, and interqubit couplers, set to
J ¼ −2.5, are represented as silver lines.

T. LANTING et al. PHYS. REV. X 4, 021041 (2014)

021041-2

Schematic of a pair of superconducting flux 
qubits coupled by a programmable inductor
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Next generation architecture signi�cantly enhances connectivity
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� have demonstrated P6 prototype
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Processor mounted on dilution refrigerator
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Technical Description of the D-Wave Quantum Processing Unit

Figure 2.15: A 3 � 3 � 4 Chimera graph. Nodes in an M � N � L Chimera graph represent each of the
2MNL qubits, qi. Edges (connections between nodes) in the graph, Ji,j, indicate couplings that may
be nonzero. As an example, J3,4 may be nonzero because an edge connects qubits 3 and 4, but J2,3
must always be zero because no edge connects qubits 2 and 3. The basic repeating block of Chimera
(a block of 2L variables with complete bipartite connectivity) may be tiled into an M � N lattice. The
left-side variables within each block connect vertically; the right-side variables, horizontally.

Figure 2.16: Each qubit has 6 couplers, 4 within and 2 between unit cells.

D-Wave User Manual 09-1109A-M
Copyright © D-Wave Systems Inc.
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PROBLEM FORMULATION AND OPTIMIZATION RESULTS

CONCLUSIONS AND OUTLOOK
Track clustering with a quantum annealer for primary vertex reconstruction at

hadron colliders
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Clustering of charged particle tracks along the beam axis is the first step in reconstructing the
positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of
primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of
event topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles
to reaching modern hadron collider event complexities and suggest research directions to overcome
each.

INTRODUCTION

Hadron colliders circulate counter-rotating beams of
hadrons in closely packed bunches that cross at desig-
nated interaction points. These interaction points are
instrumented with experimental apparatuses that detect
particles produced at hadron-hadron collisions when the
bunches cross. Reconstructing the positions of these col-
lisions within a bunch crossing, also known as primary
vertices, from the trajectories of charged particles de-
tected by the apparatuses is of paramount importance
for physics analyses. The Large Hadron Collider (LHC)
is a high luminosity collider that produces an average of
20 proton-proton (p-p) collisions at each bunch crossing,
distributed in one dimension along the beam axis. At
one of the LHC interaction points, the Compact Muon
Solenoid experiment (CMS) reconstructs the paths of
charged particles from p-p collisions as tracks detected
by its silicon tracker [1]. Track reconstruction uncertain-
ties obscure which tracks originated together at a primary
vertex. Thus, primary vertex reconstruction begins with
a one-dimensional clustering of tracks by their positions
along the beam axis where they approach it most closely,
also known as the tracks’ z0. In the CMS experiment,
this clustering is done on a classical computer using a
deterministic annealing algorithm that mimics a physi-
cal system approaching its lowest energy state iteratively
through a series of cooling operations [2]. In this Letter,
we demonstrate a method of performing this clustering
in one step on a D-Wave quantum annealer and report
preliminary results.

The D-Wave 2000Q quantum computer, available from
D-Wave Inc., performs computations through quantum
annealing [3–5]. The quantum processing unit (QPU)
has 2048 RF-SQUID flux qubits implemented as super-
conducting niobium loops [6]. Each qubit has a pro-
grammable external magnetic field to bias it. The net-
work of qubits is not fully connected and programmable
couplings have been implemented between 6016 pairs of
qubits. A computational problem is defined by setting
the biases (h

i

) and couplings (J
ij

) such that the ground

state of the qubits’ Hamiltonian corresponds to the solu-
tion. We call this the “problem Hamiltonian” (H

p

)

H
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, (1)

where �i

z

is a spin projection observable of the ith qubit
with eigenvalues +1 and -1. (This z direction is not
related to the beam axis at CMS.) It may be trivially
mapped to a bit observable q

i

with eigenvalues 0 and
1 through the shift 2q

i

= �i

z

+ I, where I is the iden-
tity matrix. The problem Hamiltonian may then be ex-
pressed for quadratic unconstrained binary optimization
(QUBO) as

H
p
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i

q
i

+
X
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b
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q
i
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, (2)

notwithstanding energy o↵sets that are irrelevant for op-
timization. The D-Wave 2000Q programming model al-
lows us to specify a problem in QUBO form by specifying
a

i

and b
ij

.
At the beginning of a typical annealing cycle in the

QPU, a driver Hamiltonian puts all qubits in a superpo-
sition of the computational basis states by introducing a
global energy bias in the transverse x�direction. Anneal-
ing proceeds by lowering this driver Hamiltonian which
simultaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land
in the ground state of H

p

if this change is su�ciently
gradual, the ground state is unique with a non-zero en-
ergy separation from other states, and the initial state
of the qubits is the ground state of the initial field [7–
9]. These conditions are di�cult to achieve experimen-
tally. We therefore anneal within tens of microseconds
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ergy separation from other states, and the initial state
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9]. These conditions are di�cult to achieve experimen-
tally. We therefore anneal within tens of microseconds

2

during which quantum tunneling leaves the system in a
low energy configuration at the end of the annealing pro-
cess [10]. We measure the final state of the qubits as
a solution, and repeat several times. The lowest energy
solution is then taken as the best one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version
of this algorithm has been described by V. Kumar, et
al [11]. Further, we distort the Hamiltonian to encour-
age annealing to the ground state given the clustering
characteristics of tracks observed at CMS. Given current
technological limitations, we cannot cluster thousands of
tracks into 20 or more primary vertices as expected at
the LHC. We show how our method scales with event
complexity by testing it on a variety of event topologies
from 2 primary vertices and 10 tracks to 5 primary ver-
tices and 15 tracks, where the positions of vertices and
tracks are drawn from measured distributions at CMS.

Finally, we discuss three obstacles for solving event
complexities relevant in high luminosity hadron collider
experiments and suggest directions of investigation to
overcome each. Extended to two dimensions, the method
be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
ticle showers. Research in this direction may acceler-
ate both quantum information science and high energy
physics instrumentation.

FORMULATION

For track clustering, we seek the ground state of the
problem Hamiltonian
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where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to
be associated with the kth vertex, and D(i, j) is a mea-
sure of distance between the reconstructed z0 parameters
of the ith and jth tracks. For one-dimensional clustering,
we find the absolute distance between z

i

and z
j

divided
by the quadrature sum of the measurement uncertainties
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to be an e↵ective measure:
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CMS distributions of track z0 around vertices tend to
cluster D(i, j) near zero. This results in a cluster of en-
ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p

ik

for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p

ik

add up to 1 for all tracks; these are checked
o✏ine by a CPU and marked as invalid.

If each p
ik

is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
14] and can be re-used for multiple events. We need to
program n
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logical qubits and n
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RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].

2

during which quantum tunneling leaves the system in a
low energy configuration at the end of the annealing pro-
cess [10]. We measure the final state of the qubits as
a solution, and repeat several times. The lowest energy
solution is then taken as the best one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version
of this algorithm has been described by V. Kumar, et
al [11]. Further, we distort the Hamiltonian to encour-
age annealing to the ground state given the clustering
characteristics of tracks observed at CMS. Given current
technological limitations, we cannot cluster thousands of
tracks into 20 or more primary vertices as expected at
the LHC. We show how our method scales with event
complexity by testing it on a variety of event topologies
from 2 primary vertices and 10 tracks to 5 primary ver-
tices and 15 tracks, where the positions of vertices and
tracks are drawn from measured distributions at CMS.

Finally, we discuss three obstacles for solving event
complexities relevant in high luminosity hadron collider
experiments and suggest directions of investigation to
overcome each. Extended to two dimensions, the method
be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
ticle showers. Research in this direction may acceler-
ate both quantum information science and high energy
physics instrumentation.
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CMS distributions of track z0 around vertices tend to
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with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].

2

during which quantum tunneling leaves the system in a
low energy configuration at the end of the annealing pro-
cess [10]. We measure the final state of the qubits as
a solution, and repeat several times. The lowest energy
solution is then taken as the best one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version
of this algorithm has been described by V. Kumar, et
al [11]. Further, we distort the Hamiltonian to encour-
age annealing to the ground state given the clustering
characteristics of tracks observed at CMS. Given current
technological limitations, we cannot cluster thousands of
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tracks are drawn from measured distributions at CMS.
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ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p
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for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p
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add up to 1 for all tracks; these are checked
o✏ine by a CPU and marked as invalid.

If each p
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is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
14] and can be re-used for multiple events. We need to
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RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].

• Adiabatic quantum computing exploits:
A system in ground state of a Hamiltonian evolves to 

ground state of perturbed Hamiltonian if perturbation is slow

• Quantum annealing is a practical approximation to adiabatic 
quantum computing in finite time, open system. Finds low-
energy states of interacting spin system using thermally-
assisted quantum tunneling

• D-Wave 2000Q processor contains 2048 artificial spins 
made from Nb RF-SQUIDs. Bias to each spin (hi) and 
couplings between spins (Jij) are programmable

• Physical reasons limit connectivity

• System prepared in ground state of “transverse” 
Hamiltonian. Turned off while turning on problem 
Hamiltonian.

• Spin Hamiltonian trivially shifted to quadratic unconstrained binary optimization (QUBO) form.

• Problem mapped from logical qubits to physical qubits to 
mitigate thermal bit flips using D-Wave’s proprietary algorithms

0 1 2p-p collision number: 

Tracks “cutting” beam axis
at physical positions 

LHC beam axis

pi0 pj0

zi zj

D(i, j)

• Objective function we minimize for clustering tracks to 
collisions is naturally in QUBO form

• pik is binary probability of track i associated with collision k. 
Represented by a qubit

• D(i, j) is measure of distance between tracks i and j. 
Uncertainties of track reconstruction are included

• λ enforces one track associated to one collision. 
Optimal λ = 1.2 × max(D(i, j))

• g(x; m) distorts D(i, j) to increase smaller values, thus 
making intermediate states approximately equidistant 
depending on m. Seen to improve solution convergence

Problem Hamiltonian in QUBO form

Distance measure between tracks

Distortion function to optimize convergence

• Algorithm tested on artificial events drawn from simulated 
and measured LHC distributions of collision positions and 
tracks

• Realistic track reconstruction uncertainties used
CMS Collaboration, JINST 9 (2014) P10009

• Illustration shows quantum annealing output for event 
with 3 collisions and 15 tracks

• Quantum state prepared and annealed 10,000 times.
• Annealing time = 20 µs
• Readout time = 123 µs
• Re-thermalization delay = 21 µs

• 6,825 solutions are valid, i.e. !k pik = 1 for all tracks

• 6,615 solutions are correct. Efficiency = 66%

• Small number of valid secondary solutions where one 
track has been misassociated

• Solution’s pik is track association to p-p collisions. 
Combined with zi and δzi, collision positions can be 
estimated

Energy spectrum of quantum annealing solutions 
for one event with 3 collisions and 15 tracks. 

How is this efficiency distributed?

• We consider an ensemble of 100 events with 3 collisions 
and 15 tracks thrown from measured CMS distributions

• Events with collisions spaced closely compared to track 
uncertainties are difficult for the QPU to resolve

• Results in a distribution of efficiencies with a mean of 42% 
and a standard deviation of 25%

Histogram of QPU convergence efficiency to the 
correct solution for 3 collisions and 15 tracks using 
100 events

How does solution finding efficiency scale?

• We repeated investigation for seven event topologies: 

• Complexity characterized by number of logical qubits

• Increasing complexity results in lower solution finding 
efficiency. Implies more annealing cycles needed. 

• For efficiency ϵ, to obtain at least 1 correct answer with 
95% certainty, we need N samples:

3

As an illustration of the algorithm, consider an event
with 3 vertices where 5 tracks emanate from each vertex.
This requires 45 logical qubits to encode. The biases
and couplings between them are obtained from Eq. 4 in
QUBO form. It takes 8 ms to program them into the
QPU. Sampling the QPU for solutions consists of an-
nealing as described in Eq. 3, readout of the qubits, and
a delay for re-thermalizing the qubits to mitigate inter-
sample correlations. Annealing is allowed for 20 µs by
default. Readout takes 123 µs, and the delay is set to 21
µs. 10,000 sampling cycles are performed. The energy
spectrum of the solutions, of which 6,825 are valid (where
p

ik

add up to 1 for every track) is shown in Fig. 1. The
energy scale is set by B(1) as defined in Eq. 3, which is
6h GHz in the QPU used for this study. Of the valid so-
lutions, 6,615 have landed on the lowest energy solution,
marked as “Solution 1” in the figure. On investigating
the qubit states, we find that the lowest energy solution
corresponds to the correct clustering of the tracks with
their respective vertices. Thus, the e�ciency of finding
the correct solution is noted as 66%. A small number
of valid solutions correspond to “Solution 2” where one
track has been misassociated with a vertex. Further mis-
associations result in higher energy valid solutions in the
spectrum.

Next, we consider an ensemble of 100 such events with
3 primary vertices and 15 tracks thrown from measured
CMS distributions. Events with vertices spaced closely
together compared to the spread of their tracks are dif-
ficult for the QPU to solve correctly and result in lower
convergence e�ciencies than events where vertices are
widely separated. This results in a distribution of ef-
ficiencies shown in Fig. 2 with a mean of 42% and a
standard deviation of 25%.

To characterize how this e�ciency depends on event
complexity, we repeated our investigation for six other
event topologies: 2 vertices and 10 tracks, 2 vertices 16
tracks, 3 vertices 9 tracks, 4 vertices 12 tracks, 4 vertices
16 tracks, and 5 vertices 15 tracks. With increasing com-
plexity, measured by the number of logical qubits needed,
we observe a decreasing e�ciency shown in Fig. 3. The
trend has been empirically fitted to a quadratic form.

We determine the time it takes to solve an event on
the QPU by finding the number of samples needed to
obtain at least 1 correct answer with 95% certainty. This
is estimated from the convergence e�ciency. Assuming
a binomial distribution around the mean convergence ef-
ficiency ✏, we calculate the number of samples needed to
be

N = log1�✏

0.05. (7)

Thus, while we need 2 samples (330 µs) for events with
2 vertices and 10 or 16 tracks, and 3 samples (490 µs)
for events with 3 vertices and 9 tracks, we need approx-
imately 10,000 samples (1.6 s) for events with 5 vertices
and 15 tracks.

FIG. 1. The energy spectrum of solutions for one event with
3 primary vertices and 15 tracks explored by the QPU with
10,000 samples. Energies corresponding to valid solutions,
where the pik add up to 1 for every track, are plotted with
solid lines while invalid solutions are plotted with dashed lines.
The best and next-to-best valid solutions are indicated as So-
lutions 1 and 2, respectively. For clarity, the histogram is
binned by 1 GHz below 20 GHz, by 10 GHz for 20 – 30 GHz,
and by 50 GHz above 30 GHz. Events in 10 (50) GHz bins
are normalized by 10 (50).

FIG. 2. A histogram of QPU convergence e�ciency to the
correct solution for the case of 3 primary vertices and 15 tracks
using 100 events.

Dependence of solution finding efficiency on track 
clustering problem complexity measured in the 
number of logical qubits used

Track clustering, first step of vertexing at the LHC, finds 
a  natural implementation on a quantum annealer.

• Track association to p-p collision recovered
• p-p collision positions reconstructed from track 

positions that belong to a collision

LHC produces 1000s of tracks, 20 or more collisions per 
bunch-crossing. Three obstacles to scaling up:

• Obstacle 1. Decreasing solution finding efficiency with 
event complexity. Research paths:

• Find theoretical model of how energy spacing between 
states affect annealing to the ground state

• Modified annealing schedule to kick system out of local 
minima with wide tunneling barriers

• Obstacle 2. Failure of graph embedding from logical to 
physical qubits. Research paths:

• Customize graph embedding algorithm
• Delay annealing of long chains of qubits
• D-Wave Pegasus processor with 5,000+ qubits and 15 

connections per qubit will alleviate this

• Obstacle 3. Limited numbers of qubits. Research path:
• Hierarchical application of clustering algorithm
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Figure 1: Illustration of the penalty D(i, j) imposed by the problem Hamiltonian in Eq. 4 when widely separated tracks in z0, zi and zj are
associated with the same p-p collision. Collisions are labeled by integers from 0 to nV � 1. The algorithm solves for the association matrix
pik where i is the track index and k is the collision index.

multaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land in
the ground state of H

p

if this change is su�ciently gradual,
the ground state is unique with a non-zero energy separa-
tion from other states, and the initial state of the qubits is
the ground state of the initial field [6, 7, 8]. These condi-
tions are di�cult to achieve experimentally. We therefore
anneal within tens of microseconds during which quantum
tunneling leaves the system in a low energy configuration
at the end of the annealing process [9]. We measure the
final state of the qubits as a solution, and repeat several
times. The lowest energy solution is then taken as the best
one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version of
this algorithm has been described by V. Kumar, et al [10].
Further, we distort the Hamiltonian to encourage anneal-
ing to the ground state given the clustering characteristics
of tracks observed at CMS. Given current technological
limitations, we cannot cluster thousands of tracks into 20
or more primary vertices as expected at the LHC. We show
how our method scales with event complexity by testing
it on a variety of event topologies from 2 primary ver-
tices and 10 tracks to 5 primary vertices and 15 tracks,
where the positions of vertices and tracks are drawn from
measured distributions at CMS. Our algorithm is not a
quantum-classical hybrid, and relies entirely on thermally
assisted quantum tunneling. This allows us to benchmark

it clearly against simulated annealing running on a mod-
ern CPU in the same period of time as a sampling cycle
on the QPU.

Finally, we discuss three directions of research to im-
prove this algorithm to solve event complexities relevant
in high luminosity hadron collider experiments. Extended
to two dimensions, the method can be used for other high
energy physics applications like clustering energy deposits
in calorimeters to identify particle showers. Research in
this direction may accelerate both quantum information
science and high energy physics instrumentation.

2. Formulation

For track clustering, we seek the ground state of the
problem Hamiltonian
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where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to be
associated with the kth vertex, and D(i, j) is a measure of
distance between the reconstructed z0 parameters of the
ith and jth tracks.

As in any clustering algorithm, a density threshold of
tracks must be set that determines n

V

. In this paper, we
order the tracks in z0 and count the number of gaps greater
than a threshold of 5 mm. n

V

is set to this number plus
one.

For D(i, j), we find the absolute distance between z
i

and z
j

divided by the quadrature sum of the measurement
uncertainties �z

i

and �z
j

to be an e↵ective measure:

D(i, j) =
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� z
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|q
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j

. (5)

CMS distributions of track z0 around vertices tend to clus-
ter D(i, j) near zero. This results in a cluster of energy
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ABSTRACT: Clustering of charged particle tracks along the beam axis is the first step in reconstructing the positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a 
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of event 
topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles to reaching modern hadron collider event complexities and suggest research directions to overcome each.

PRIMARY VERTEXING AT THE LARGE HADRON COLLIDER 

~ 8 cm

Representative event in CMS with charged particle tracks from 78 collisions

• The LHC circulates protons inside its beam-pipes in 
bunches. Each bunch contains 100 billion protons 
(2012 run)

• When counter-rotating bunches cross, only 
~ 20 protons collide

• Each p-p collision emits charged particles that are 
detected as tracks by experiments like the Compact 
Muon Solenoid (CMS)

PRIMARY VERTEXING:
Which tracks come from which p-p collision?
Where exactly are the p-p collision positions?The CMS apparatus with person for scale

THE D-WAVE 2048 QUBIT QUANTUM COMPUTER

of the spins, respectively, and the biases hi and couplings
Jij encode a particular optimization problem. The time-
dependent variation of Δ and E is parametrized by s≡ t=tf
with time t ∈ ½0; tf" and total run (anneal) time tf. QA is
performed by first setting Δ ≫ E, which results in a ground
state into which the spins can be easily initialized [6]. Then
Δ is reduced and E is increased until E ≫ Δ. At this point,
the system Hamiltonian is dominated by HP, which
represents the encoded optimization problem. At the end
of the evolution, a ground state ofHP represents the lowest
energy configuration for the problem Hamiltonian and thus
a solution to the optimization problem.

III. QUANTUM ANNEALING PROCESSOR

We have built a processor that implements HS using
superconducting flux qubits as effective spins [6,7,23,24].
Figure 1(a) shows a photograph of the processor. Figure 1(c)
shows the circuit schematic of a pair of flux qubits with the
magnetic flux controls Φx

qi and Φx
ccjj. The annealing param-

eter s is controlled with the global bias Φx
ccjjðtÞ (see

Appendix A for the mapping between s and Φx
ccjj and a

description of how Φx
qi is provided for each qubit). The

strength and sign of the inductive coupling between pairs of
qubits is controlled with magnetic fluxΦx

co;ij that is provided
by an individual on-chip digital-to-analog converter for
each coupler [8]. The parameters hi and Jij are thus in situ
tunable, thereby allowing the encoding of a vast number of
problems. The time-dependent energy scales ΔðsÞ and EðsÞ
are calculated from measured qubit parameters and plotted
in Fig. 1(d). We calibrate and correct the individual flux
qubit parameters in our processor to ensure that every qubit
has a close-to-identical Δ and E (the energy gap Δ is
balanced to better than 8% between qubits and E to better
than 5%). See Appendix A for measurements of these
energy scales. The interqubit couplers are calibrated as
described in Ref. [25]. The processor we study here is
mounted on the mixing chamber of a dilution refrigerator
held at temperature T ¼ 12.5 mK.

IV. FERROMAGNETICALLY COUPLED
INSTANCES

The experiments reported herein focus on one of the
eight-qubit unit cells of the larger QA processor as
indicated in Fig. 1(a). The unit cell is isolated by setting
all couplings outside of that subsection to Jij ¼ 0 for all
experiments. We then pose specific HP instances with
strong ferromagnetic (FM) coupling Jij ¼ −2.5 and hi ¼ 0
to that unit cell, as illustrated in Figs. 1(e) and 1(f). These
configurations produce coupled two- and eight-qubit sys-
tems, respectively. The Hamiltonian (1) describes the
behavior of these systems during QA.
Typical observations of entanglement in the quantum

computing literature involve applying interactions between

FIG. 1. (a) Photograph of the QA processor used in this
study. We report measurements performed on the eight-qubit
unit cell indicated. The bodies of the qubits are extended
loops of Nb wiring (highlighted with red rectangles). Inter-
qubit couplers are located at the intersections of the qubit
bodies. (b) Electron micrograph showing the cross section of
a typical portion of the processor circuitry (described in more
detail in Appendix A). (c) Schematic diagram of a pair of
coupled superconducting flux qubits with external control
biases Φx

qi and Φx
ccjj and with flux through the body of the ith

qubit denoted as Φqi. An inductive coupling between the
qubits is tuned with the bias Φx

co;ij. (d) Energy scales ΔðsÞ
and EðsÞ in Hamiltonian (1) calculated from a rf SQUID
model based on the median of independently measured device
parameters for these eight qubits. See Appendix A for more
details. (e),(f) The two- and eight-qubit systems studied were
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represented as gold spheres, and interqubit couplers, set to
J ¼ −2.5, are represented as silver lines.
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Technical Description of the D-Wave Quantum Processing Unit

Figure 2.15: A 3 � 3 � 4 Chimera graph. Nodes in an M � N � L Chimera graph represent each of the
2MNL qubits, qi. Edges (connections between nodes) in the graph, Ji,j, indicate couplings that may
be nonzero. As an example, J3,4 may be nonzero because an edge connects qubits 3 and 4, but J2,3
must always be zero because no edge connects qubits 2 and 3. The basic repeating block of Chimera
(a block of 2L variables with complete bipartite connectivity) may be tiled into an M � N lattice. The
left-side variables within each block connect vertically; the right-side variables, horizontally.

Figure 2.16: Each qubit has 6 couplers, 4 within and 2 between unit cells.

D-Wave User Manual 09-1109A-M
Copyright © D-Wave Systems Inc.
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PROBLEM FORMULATION AND OPTIMIZATION RESULTS

CONCLUSIONS AND OUTLOOK
Track clustering with a quantum annealer for primary vertex reconstruction at

hadron colliders

S. Das,� A. J. Wildridge, S. B. Vaidya, and A. Jung†

Department of Physics and Astronomy, Purdue University

(Dated: March 25, 2019)

Clustering of charged particle tracks along the beam axis is the first step in reconstructing the
positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of
primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of
event topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles
to reaching modern hadron collider event complexities and suggest research directions to overcome
each.

INTRODUCTION

Hadron colliders circulate counter-rotating beams of
hadrons in closely packed bunches that cross at desig-
nated interaction points. These interaction points are
instrumented with experimental apparatuses that detect
particles produced at hadron-hadron collisions when the
bunches cross. Reconstructing the positions of these col-
lisions within a bunch crossing, also known as primary
vertices, from the trajectories of charged particles de-
tected by the apparatuses is of paramount importance
for physics analyses. The Large Hadron Collider (LHC)
is a high luminosity collider that produces an average of
20 proton-proton (p-p) collisions at each bunch crossing,
distributed in one dimension along the beam axis. At
one of the LHC interaction points, the Compact Muon
Solenoid experiment (CMS) reconstructs the paths of
charged particles from p-p collisions as tracks detected
by its silicon tracker [1]. Track reconstruction uncertain-
ties obscure which tracks originated together at a primary
vertex. Thus, primary vertex reconstruction begins with
a one-dimensional clustering of tracks by their positions
along the beam axis where they approach it most closely,
also known as the tracks’ z0. In the CMS experiment,
this clustering is done on a classical computer using a
deterministic annealing algorithm that mimics a physi-
cal system approaching its lowest energy state iteratively
through a series of cooling operations [2]. In this Letter,
we demonstrate a method of performing this clustering
in one step on a D-Wave quantum annealer and report
preliminary results.

The D-Wave 2000Q quantum computer, available from
D-Wave Inc., performs computations through quantum
annealing [3–5]. The quantum processing unit (QPU)
has 2048 RF-SQUID flux qubits implemented as super-
conducting niobium loops [6]. Each qubit has a pro-
grammable external magnetic field to bias it. The net-
work of qubits is not fully connected and programmable
couplings have been implemented between 6016 pairs of
qubits. A computational problem is defined by setting
the biases (h

i

) and couplings (J
ij

) such that the ground

state of the qubits’ Hamiltonian corresponds to the solu-
tion. We call this the “problem Hamiltonian” (H

p

)
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where �i

z

is a spin projection observable of the ith qubit
with eigenvalues +1 and -1. (This z direction is not
related to the beam axis at CMS.) It may be trivially
mapped to a bit observable q

i

with eigenvalues 0 and
1 through the shift 2q

i

= �i

z

+ I, where I is the iden-
tity matrix. The problem Hamiltonian may then be ex-
pressed for quadratic unconstrained binary optimization
(QUBO) as
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notwithstanding energy o↵sets that are irrelevant for op-
timization. The D-Wave 2000Q programming model al-
lows us to specify a problem in QUBO form by specifying
a

i

and b
ij

.
At the beginning of a typical annealing cycle in the

QPU, a driver Hamiltonian puts all qubits in a superpo-
sition of the computational basis states by introducing a
global energy bias in the transverse x�direction. Anneal-
ing proceeds by lowering this driver Hamiltonian which
simultaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land
in the ground state of H

p

if this change is su�ciently
gradual, the ground state is unique with a non-zero en-
ergy separation from other states, and the initial state
of the qubits is the ground state of the initial field [7–
9]. These conditions are di�cult to achieve experimen-
tally. We therefore anneal within tens of microseconds

Track clustering with a quantum annealer for primary vertex reconstruction at
hadron colliders

S. Das,� A. J. Wildridge, S. B. Vaidya, and A. Jung†

Department of Physics and Astronomy, Purdue University

(Dated: March 25, 2019)

Clustering of charged particle tracks along the beam axis is the first step in reconstructing the
positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of
primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of
event topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles
to reaching modern hadron collider event complexities and suggest research directions to overcome
each.

INTRODUCTION

Hadron colliders circulate counter-rotating beams of
hadrons in closely packed bunches that cross at desig-
nated interaction points. These interaction points are
instrumented with experimental apparatuses that detect
particles produced at hadron-hadron collisions when the
bunches cross. Reconstructing the positions of these col-
lisions within a bunch crossing, also known as primary
vertices, from the trajectories of charged particles de-
tected by the apparatuses is of paramount importance
for physics analyses. The Large Hadron Collider (LHC)
is a high luminosity collider that produces an average of
20 proton-proton (p-p) collisions at each bunch crossing,
distributed in one dimension along the beam axis. At
one of the LHC interaction points, the Compact Muon
Solenoid experiment (CMS) reconstructs the paths of
charged particles from p-p collisions as tracks detected
by its silicon tracker [1]. Track reconstruction uncertain-
ties obscure which tracks originated together at a primary
vertex. Thus, primary vertex reconstruction begins with
a one-dimensional clustering of tracks by their positions
along the beam axis where they approach it most closely,
also known as the tracks’ z0. In the CMS experiment,
this clustering is done on a classical computer using a
deterministic annealing algorithm that mimics a physi-
cal system approaching its lowest energy state iteratively
through a series of cooling operations [2]. In this Letter,
we demonstrate a method of performing this clustering
in one step on a D-Wave quantum annealer and report
preliminary results.

The D-Wave 2000Q quantum computer, available from
D-Wave Inc., performs computations through quantum
annealing [3–5]. The quantum processing unit (QPU)
has 2048 RF-SQUID flux qubits implemented as super-
conducting niobium loops [6]. Each qubit has a pro-
grammable external magnetic field to bias it. The net-
work of qubits is not fully connected and programmable
couplings have been implemented between 6016 pairs of
qubits. A computational problem is defined by setting
the biases (h

i

) and couplings (J
ij

) such that the ground

state of the qubits’ Hamiltonian corresponds to the solu-
tion. We call this the “problem Hamiltonian” (H

p

)

H
p

=
X

i

h
i

�i

z

+
X

i

X

j>i

J
ij

�i

z

�j

z

, (1)

where �i

z

is a spin projection observable of the ith qubit
with eigenvalues +1 and -1. (This z direction is not
related to the beam axis at CMS.) It may be trivially
mapped to a bit observable q

i

with eigenvalues 0 and
1 through the shift 2q

i

= �i

z

+ I, where I is the iden-
tity matrix. The problem Hamiltonian may then be ex-
pressed for quadratic unconstrained binary optimization
(QUBO) as

H
p

=
X

i

a
i

q
i

+
X

i

X

j>i

b
ij

q
i

q
j

, (2)

notwithstanding energy o↵sets that are irrelevant for op-
timization. The D-Wave 2000Q programming model al-
lows us to specify a problem in QUBO form by specifying
a

i

and b
ij

.
At the beginning of a typical annealing cycle in the

QPU, a driver Hamiltonian puts all qubits in a superpo-
sition of the computational basis states by introducing a
global energy bias in the transverse x�direction. Anneal-
ing proceeds by lowering this driver Hamiltonian which
simultaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land
in the ground state of H

p

if this change is su�ciently
gradual, the ground state is unique with a non-zero en-
ergy separation from other states, and the initial state
of the qubits is the ground state of the initial field [7–
9]. These conditions are di�cult to achieve experimen-
tally. We therefore anneal within tens of microseconds

Track clustering with a quantum annealer for primary vertex reconstruction at
hadron colliders

S. Das,� A. J. Wildridge, S. B. Vaidya, and A. Jung†

Department of Physics and Astronomy, Purdue University

(Dated: March 25, 2019)

Clustering of charged particle tracks along the beam axis is the first step in reconstructing the
positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of
primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of
event topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles
to reaching modern hadron collider event complexities and suggest research directions to overcome
each.

INTRODUCTION

Hadron colliders circulate counter-rotating beams of
hadrons in closely packed bunches that cross at desig-
nated interaction points. These interaction points are
instrumented with experimental apparatuses that detect
particles produced at hadron-hadron collisions when the
bunches cross. Reconstructing the positions of these col-
lisions within a bunch crossing, also known as primary
vertices, from the trajectories of charged particles de-
tected by the apparatuses is of paramount importance
for physics analyses. The Large Hadron Collider (LHC)
is a high luminosity collider that produces an average of
20 proton-proton (p-p) collisions at each bunch crossing,
distributed in one dimension along the beam axis. At
one of the LHC interaction points, the Compact Muon
Solenoid experiment (CMS) reconstructs the paths of
charged particles from p-p collisions as tracks detected
by its silicon tracker [1]. Track reconstruction uncertain-
ties obscure which tracks originated together at a primary
vertex. Thus, primary vertex reconstruction begins with
a one-dimensional clustering of tracks by their positions
along the beam axis where they approach it most closely,
also known as the tracks’ z0. In the CMS experiment,
this clustering is done on a classical computer using a
deterministic annealing algorithm that mimics a physi-
cal system approaching its lowest energy state iteratively
through a series of cooling operations [2]. In this Letter,
we demonstrate a method of performing this clustering
in one step on a D-Wave quantum annealer and report
preliminary results.

The D-Wave 2000Q quantum computer, available from
D-Wave Inc., performs computations through quantum
annealing [3–5]. The quantum processing unit (QPU)
has 2048 RF-SQUID flux qubits implemented as super-
conducting niobium loops [6]. Each qubit has a pro-
grammable external magnetic field to bias it. The net-
work of qubits is not fully connected and programmable
couplings have been implemented between 6016 pairs of
qubits. A computational problem is defined by setting
the biases (h

i

) and couplings (J
ij

) such that the ground

state of the qubits’ Hamiltonian corresponds to the solu-
tion. We call this the “problem Hamiltonian” (H

p

)

H
p

=
X

i

h
i

�i

z

+
X

i

X

j>i

J
ij

�i

z

�j

z

, (1)

where �i

z

is a spin projection observable of the ith qubit
with eigenvalues +1 and -1. (This z direction is not
related to the beam axis at CMS.) It may be trivially
mapped to a bit observable q

i

with eigenvalues 0 and
1 through the shift 2q

i

= �i

z

+ I, where I is the iden-
tity matrix. The problem Hamiltonian may then be ex-
pressed for quadratic unconstrained binary optimization
(QUBO) as

H
p

=
X

i

a
i

q
i

+
X

i

X

j>i

b
ij

q
i

q
j

, (2)

notwithstanding energy o↵sets that are irrelevant for op-
timization. The D-Wave 2000Q programming model al-
lows us to specify a problem in QUBO form by specifying
a

i

and b
ij

.
At the beginning of a typical annealing cycle in the

QPU, a driver Hamiltonian puts all qubits in a superpo-
sition of the computational basis states by introducing a
global energy bias in the transverse x�direction. Anneal-
ing proceeds by lowering this driver Hamiltonian which
simultaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land
in the ground state of H

p

if this change is su�ciently
gradual, the ground state is unique with a non-zero en-
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2

during which quantum tunneling leaves the system in a
low energy configuration at the end of the annealing pro-
cess [10]. We measure the final state of the qubits as
a solution, and repeat several times. The lowest energy
solution is then taken as the best one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version
of this algorithm has been described by V. Kumar, et
al [11]. Further, we distort the Hamiltonian to encour-
age annealing to the ground state given the clustering
characteristics of tracks observed at CMS. Given current
technological limitations, we cannot cluster thousands of
tracks into 20 or more primary vertices as expected at
the LHC. We show how our method scales with event
complexity by testing it on a variety of event topologies
from 2 primary vertices and 10 tracks to 5 primary ver-
tices and 15 tracks, where the positions of vertices and
tracks are drawn from measured distributions at CMS.

Finally, we discuss three obstacles for solving event
complexities relevant in high luminosity hadron collider
experiments and suggest directions of investigation to
overcome each. Extended to two dimensions, the method
be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
ticle showers. Research in this direction may acceler-
ate both quantum information science and high energy
physics instrumentation.

FORMULATION

For track clustering, we seek the ground state of the
problem Hamiltonian
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where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to
be associated with the kth vertex, and D(i, j) is a mea-
sure of distance between the reconstructed z0 parameters
of the ith and jth tracks. For one-dimensional clustering,
we find the absolute distance between z

i

and z
j

divided
by the quadrature sum of the measurement uncertainties

�z
i

and �z
j

to be an e↵ective measure:
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CMS distributions of track z0 around vertices tend to
cluster D(i, j) near zero. This results in a cluster of en-
ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p

ik

for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p

ik

add up to 1 for all tracks; these are checked
o✏ine by a CPU and marked as invalid.

If each p
ik

is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
14] and can be re-used for multiple events. We need to
program n

V

n
T

logical qubits and n
V

n
T

(n
V

+ n
T

� 2)/2
couplings between them to encode H

p

.

RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].

2

during which quantum tunneling leaves the system in a
low energy configuration at the end of the annealing pro-
cess [10]. We measure the final state of the qubits as
a solution, and repeat several times. The lowest energy
solution is then taken as the best one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version
of this algorithm has been described by V. Kumar, et
al [11]. Further, we distort the Hamiltonian to encour-
age annealing to the ground state given the clustering
characteristics of tracks observed at CMS. Given current
technological limitations, we cannot cluster thousands of
tracks into 20 or more primary vertices as expected at
the LHC. We show how our method scales with event
complexity by testing it on a variety of event topologies
from 2 primary vertices and 10 tracks to 5 primary ver-
tices and 15 tracks, where the positions of vertices and
tracks are drawn from measured distributions at CMS.

Finally, we discuss three obstacles for solving event
complexities relevant in high luminosity hadron collider
experiments and suggest directions of investigation to
overcome each. Extended to two dimensions, the method
be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
ticle showers. Research in this direction may acceler-
ate both quantum information science and high energy
physics instrumentation.

FORMULATION

For track clustering, we seek the ground state of the
problem Hamiltonian

H
p

=
nVX

k

nTX

i

nTX

j>i

p
ik

p
jk

g(D(i, j); m)

+�

nTX

i

 
1 �

nVX

k

p
ik

!2

,

(4)

where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to
be associated with the kth vertex, and D(i, j) is a mea-
sure of distance between the reconstructed z0 parameters
of the ith and jth tracks. For one-dimensional clustering,
we find the absolute distance between z

i

and z
j

divided
by the quadrature sum of the measurement uncertainties

�z
i

and �z
j

to be an e↵ective measure:

D(i, j) =
|z

i

� z
j

|q
�z2

i

+ �z2
j

. (5)

CMS distributions of track z0 around vertices tend to
cluster D(i, j) near zero. This results in a cluster of en-
ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p

ik

for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p

ik

add up to 1 for all tracks; these are checked
o✏ine by a CPU and marked as invalid.

If each p
ik

is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
14] and can be re-used for multiple events. We need to
program n

V

n
T

logical qubits and n
V

n
T

(n
V

+ n
T

� 2)/2
couplings between them to encode H

p

.

RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].

2

during which quantum tunneling leaves the system in a
low energy configuration at the end of the annealing pro-
cess [10]. We measure the final state of the qubits as
a solution, and repeat several times. The lowest energy
solution is then taken as the best one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version
of this algorithm has been described by V. Kumar, et
al [11]. Further, we distort the Hamiltonian to encour-
age annealing to the ground state given the clustering
characteristics of tracks observed at CMS. Given current
technological limitations, we cannot cluster thousands of
tracks into 20 or more primary vertices as expected at
the LHC. We show how our method scales with event
complexity by testing it on a variety of event topologies
from 2 primary vertices and 10 tracks to 5 primary ver-
tices and 15 tracks, where the positions of vertices and
tracks are drawn from measured distributions at CMS.

Finally, we discuss three obstacles for solving event
complexities relevant in high luminosity hadron collider
experiments and suggest directions of investigation to
overcome each. Extended to two dimensions, the method
be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
ticle showers. Research in this direction may acceler-
ate both quantum information science and high energy
physics instrumentation.

FORMULATION

For track clustering, we seek the ground state of the
problem Hamiltonian

H
p

=
nVX

k

nTX

i

nTX

j>i

p
ik

p
jk

g(D(i, j); m)

+�

nTX

i

 
1 �

nVX

k

p
ik

!2

,

(4)

where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to
be associated with the kth vertex, and D(i, j) is a mea-
sure of distance between the reconstructed z0 parameters
of the ith and jth tracks. For one-dimensional clustering,
we find the absolute distance between z

i

and z
j

divided
by the quadrature sum of the measurement uncertainties

�z
i

and �z
j

to be an e↵ective measure:

D(i, j) =
|z

i

� z
j

|q
�z2

i

+ �z2
j

. (5)

CMS distributions of track z0 around vertices tend to
cluster D(i, j) near zero. This results in a cluster of en-
ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p

ik

for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p

ik

add up to 1 for all tracks; these are checked
o✏ine by a CPU and marked as invalid.

If each p
ik

is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
14] and can be re-used for multiple events. We need to
program n

V

n
T

logical qubits and n
V

n
T

(n
V

+ n
T

� 2)/2
couplings between them to encode H

p

.

RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].

• Adiabatic quantum computing exploits:
A system in ground state of a Hamiltonian evolves to 

ground state of perturbed Hamiltonian if perturbation is slow

• Quantum annealing is a practical approximation to adiabatic 
quantum computing in finite time, open system. Finds low-
energy states of interacting spin system using thermally-
assisted quantum tunneling

• D-Wave 2000Q processor contains 2048 artificial spins 
made from Nb RF-SQUIDs. Bias to each spin (hi) and 
couplings between spins (Jij) are programmable

• Physical reasons limit connectivity

• System prepared in ground state of “transverse” 
Hamiltonian. Turned off while turning on problem 
Hamiltonian.

• Spin Hamiltonian trivially shifted to quadratic unconstrained binary optimization (QUBO) form.

• Problem mapped from logical qubits to physical qubits to 
mitigate thermal bit flips using D-Wave’s proprietary algorithms

0 1 2p-p collision number: 

Tracks “cutting” beam axis
at physical positions 

LHC beam axis

pi0 pj0

zi zj

D(i, j)

• Objective function we minimize for clustering tracks to 
collisions is naturally in QUBO form

• pik is binary probability of track i associated with collision k. 
Represented by a qubit

• D(i, j) is measure of distance between tracks i and j. 
Uncertainties of track reconstruction are included

• λ enforces one track associated to one collision. 
Optimal λ = 1.2 × max(D(i, j))

• g(x; m) distorts D(i, j) to increase smaller values, thus 
making intermediate states approximately equidistant 
depending on m. Seen to improve solution convergence

Problem Hamiltonian in QUBO form

Distance measure between tracks

Distortion function to optimize convergence

• Algorithm tested on artificial events drawn from simulated 
and measured LHC distributions of collision positions and 
tracks

• Realistic track reconstruction uncertainties used
CMS Collaboration, JINST 9 (2014) P10009

• Illustration shows quantum annealing output for event 
with 3 collisions and 15 tracks

• Quantum state prepared and annealed 10,000 times.
• Annealing time = 20 µs
• Readout time = 123 µs
• Re-thermalization delay = 21 µs

• 6,825 solutions are valid, i.e. !k pik = 1 for all tracks

• 6,615 solutions are correct. Efficiency = 66%

• Small number of valid secondary solutions where one 
track has been misassociated

• Solution’s pik is track association to p-p collisions. 
Combined with zi and δzi, collision positions can be 
estimated

Energy spectrum of quantum annealing solutions 
for one event with 3 collisions and 15 tracks. 

How is this efficiency distributed?

• We consider an ensemble of 100 events with 3 collisions 
and 15 tracks thrown from measured CMS distributions

• Events with collisions spaced closely compared to track 
uncertainties are difficult for the QPU to resolve

• Results in a distribution of efficiencies with a mean of 42% 
and a standard deviation of 25%

Histogram of QPU convergence efficiency to the 
correct solution for 3 collisions and 15 tracks using 
100 events

How does solution finding efficiency scale?

• We repeated investigation for seven event topologies: 

• Complexity characterized by number of logical qubits

• Increasing complexity results in lower solution finding 
efficiency. Implies more annealing cycles needed. 

• For efficiency ϵ, to obtain at least 1 correct answer with 
95% certainty, we need N samples:

3

As an illustration of the algorithm, consider an event
with 3 vertices where 5 tracks emanate from each vertex.
This requires 45 logical qubits to encode. The biases
and couplings between them are obtained from Eq. 4 in
QUBO form. It takes 8 ms to program them into the
QPU. Sampling the QPU for solutions consists of an-
nealing as described in Eq. 3, readout of the qubits, and
a delay for re-thermalizing the qubits to mitigate inter-
sample correlations. Annealing is allowed for 20 µs by
default. Readout takes 123 µs, and the delay is set to 21
µs. 10,000 sampling cycles are performed. The energy
spectrum of the solutions, of which 6,825 are valid (where
p

ik

add up to 1 for every track) is shown in Fig. 1. The
energy scale is set by B(1) as defined in Eq. 3, which is
6h GHz in the QPU used for this study. Of the valid so-
lutions, 6,615 have landed on the lowest energy solution,
marked as “Solution 1” in the figure. On investigating
the qubit states, we find that the lowest energy solution
corresponds to the correct clustering of the tracks with
their respective vertices. Thus, the e�ciency of finding
the correct solution is noted as 66%. A small number
of valid solutions correspond to “Solution 2” where one
track has been misassociated with a vertex. Further mis-
associations result in higher energy valid solutions in the
spectrum.

Next, we consider an ensemble of 100 such events with
3 primary vertices and 15 tracks thrown from measured
CMS distributions. Events with vertices spaced closely
together compared to the spread of their tracks are dif-
ficult for the QPU to solve correctly and result in lower
convergence e�ciencies than events where vertices are
widely separated. This results in a distribution of ef-
ficiencies shown in Fig. 2 with a mean of 42% and a
standard deviation of 25%.

To characterize how this e�ciency depends on event
complexity, we repeated our investigation for six other
event topologies: 2 vertices and 10 tracks, 2 vertices 16
tracks, 3 vertices 9 tracks, 4 vertices 12 tracks, 4 vertices
16 tracks, and 5 vertices 15 tracks. With increasing com-
plexity, measured by the number of logical qubits needed,
we observe a decreasing e�ciency shown in Fig. 3. The
trend has been empirically fitted to a quadratic form.

We determine the time it takes to solve an event on
the QPU by finding the number of samples needed to
obtain at least 1 correct answer with 95% certainty. This
is estimated from the convergence e�ciency. Assuming
a binomial distribution around the mean convergence ef-
ficiency ✏, we calculate the number of samples needed to
be

N = log1�✏

0.05. (7)

Thus, while we need 2 samples (330 µs) for events with
2 vertices and 10 or 16 tracks, and 3 samples (490 µs)
for events with 3 vertices and 9 tracks, we need approx-
imately 10,000 samples (1.6 s) for events with 5 vertices
and 15 tracks.

FIG. 1. The energy spectrum of solutions for one event with
3 primary vertices and 15 tracks explored by the QPU with
10,000 samples. Energies corresponding to valid solutions,
where the pik add up to 1 for every track, are plotted with
solid lines while invalid solutions are plotted with dashed lines.
The best and next-to-best valid solutions are indicated as So-
lutions 1 and 2, respectively. For clarity, the histogram is
binned by 1 GHz below 20 GHz, by 10 GHz for 20 – 30 GHz,
and by 50 GHz above 30 GHz. Events in 10 (50) GHz bins
are normalized by 10 (50).

FIG. 2. A histogram of QPU convergence e�ciency to the
correct solution for the case of 3 primary vertices and 15 tracks
using 100 events.

Dependence of solution finding efficiency on track 
clustering problem complexity measured in the 
number of logical qubits used

Track clustering, first step of vertexing at the LHC, finds 
a  natural implementation on a quantum annealer.

• Track association to p-p collision recovered
• p-p collision positions reconstructed from track 

positions that belong to a collision

LHC produces 1000s of tracks, 20 or more collisions per 
bunch-crossing. Three obstacles to scaling up:

• Obstacle 1. Decreasing solution finding efficiency with 
event complexity. Research paths:

• Find theoretical model of how energy spacing between 
states affect annealing to the ground state

• Modified annealing schedule to kick system out of local 
minima with wide tunneling barriers

• Obstacle 2. Failure of graph embedding from logical to 
physical qubits. Research paths:

• Customize graph embedding algorithm
• Delay annealing of long chains of qubits
• D-Wave Pegasus processor with 5,000+ qubits and 15 

connections per qubit will alleviate this

• Obstacle 3. Limited numbers of qubits. Research path:
• Hierarchical application of clustering algorithm
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Publication: Track clustering with a quantum annealer for primary 
vertex reconstruction at hadron colliders

https://arxiv.org/abs/1903.08879
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Scaling of D-Wave processors
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Figure 1: Illustration of the penalty D(i, j) imposed by the problem Hamiltonian in Eq. 4 when widely separated tracks in z0, zi and zj are
associated with the same p-p collision. Collisions are labeled by integers from 0 to nV � 1. The algorithm solves for the association matrix
pik where i is the track index and k is the collision index.

multaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land in
the ground state of H

p

if this change is su�ciently gradual,
the ground state is unique with a non-zero energy separa-
tion from other states, and the initial state of the qubits is
the ground state of the initial field [6, 7, 8]. These condi-
tions are di�cult to achieve experimentally. We therefore
anneal within tens of microseconds during which quantum
tunneling leaves the system in a low energy configuration
at the end of the annealing process [9]. We measure the
final state of the qubits as a solution, and repeat several
times. The lowest energy solution is then taken as the best
one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version of
this algorithm has been described by V. Kumar, et al [10].
Further, we distort the Hamiltonian to encourage anneal-
ing to the ground state given the clustering characteristics
of tracks observed at CMS. Given current technological
limitations, we cannot cluster thousands of tracks into 20
or more primary vertices as expected at the LHC. We show
how our method scales with event complexity by testing
it on a variety of event topologies from 2 primary ver-
tices and 10 tracks to 5 primary vertices and 15 tracks,
where the positions of vertices and tracks are drawn from
measured distributions at CMS. Our algorithm is not a
quantum-classical hybrid, and relies entirely on thermally
assisted quantum tunneling. This allows us to benchmark

it clearly against simulated annealing running on a mod-
ern CPU in the same period of time as a sampling cycle
on the QPU.

Finally, we discuss three directions of research to im-
prove this algorithm to solve event complexities relevant
in high luminosity hadron collider experiments. Extended
to two dimensions, the method can be used for other high
energy physics applications like clustering energy deposits
in calorimeters to identify particle showers. Research in
this direction may accelerate both quantum information
science and high energy physics instrumentation.

2. Formulation

For track clustering, we seek the ground state of the
problem Hamiltonian

H
p

=
nVX

k

nTX

i

nTX

j>i

p
ik

p
jk

g(D(i, j); m)

+�

nTX

i

 
1 �

nVX

k

p
ik

!2

,

(4)

where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to be
associated with the kth vertex, and D(i, j) is a measure of
distance between the reconstructed z0 parameters of the
ith and jth tracks.

As in any clustering algorithm, a density threshold of
tracks must be set that determines n

V

. In this paper, we
order the tracks in z0 and count the number of gaps greater
than a threshold of 5 mm. n

V

is set to this number plus
one.

For D(i, j), we find the absolute distance between z
i

and z
j

divided by the quadrature sum of the measurement
uncertainties �z

i

and �z
j

to be an e↵ective measure:

D(i, j) =
|z

i

� z
j

|q
�z2

i

+ �z2
j

. (5)

CMS distributions of track z0 around vertices tend to clus-
ter D(i, j) near zero. This results in a cluster of energy

2

levels near the ground state. To distribute the energy lev-
els more uniformly, we use a distortion function on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as the
system anneals and is seen to improve convergence e�-
ciency. m is set to 5 for event topologies considered here.

� is a penalty parameter chosen to discourage p
ik

for
each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p

ik

add up to 1 for all tracks; these are checked o✏ine
by a CPU and marked as invalid.

If each p
ik

is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the prob-
lem Hamiltonian described in Eq 2. Therefore, it can
be directly programmed into a D-Wave QPU. A logical
qubit is one physical qubit or a set of strongly coupled
physical qubits created to compensate for the limited con-
nectivity of a single physical qubit and to mitigate bit
flips from thermal fluctuations. The graph embedding
used to map the network of logical qubits to the net-
work of physical qubits is found using default D-Wave
algorithms [11, 12, 13] and can be re-used for multiple
events. We need to program n

V

n
T

logical qubits and
n

V

n
T

(n
V

+ n
T

� 2)/2 couplings between them to encode
H

p

.

3. Results

To test the algorithm, we generate artificial events with
vertex positions in one dimension sampled from a simu-
lated distribution of p-p bunch crossings at the LHC inter-
action point within CMS. A Gaussian with 35 mm width
is a good representation of this distribution. The z0 pa-
rameter of toy tracks are sampled from Gaussians centered
around the generated vertices with widths corresponding
to realistic track resolutions measured in CMS [14]. These
widths range from 0.1 to 0.7 mm depending on the 3D mo-
mentum of the tracks, which are also sampled from mea-
sured track momentum distributions in CMS [14].

3.1. Primary vertexing one event

To illustrate the algorithm, we generate an event with
3 vertices where 5 tracks emanate from each vertex. This
requires 45 logical qubits to encode. The biases and cou-
plings between them are obtained from Eq. 4 in QUBO
form and displayed in Fig. 2.

It takes 8 ms to program the biases and couplings into
the QPU. Sampling the QPU for solutions consists of an-
nealing as described in Eq. 3, readout of the qubits, and

Figure 2: Biases and couplings between the logical qubits of the
QPU as coe�cients of the QUBO form used to solve a particular
event with 3 primary vertices and 15 tracks. The diagonal terms are
biases corresponding to the � term in Eq. 4.

Figure 3: Energy spectrum of solutions for one event with 3 primary
vertices and 15 tracks explored by the QPU with 10,000 samples.
Energies corresponding to valid solutions, where the pik add up to
1 for every track, are plotted with solid lines while invalid solutions
are plotted with dashed lines. Error bars correspond to statistical
uncertainties. The best and next-to-best valid solutions are indicated
as Solutions 1 and 2, respectively. For clarity, the histogram is binned
by 1 GHz below 10 GHz, by 10 GHz for 10 – 100 GHz, and by 100
GHz above 100 GHz. Events in 10 (100) GHz bins are normalized
by 10 (100).

3

๏ Clustering problem naturally expressed in QUBO form (V. Kumar, et. al. “Quantum annealing for combinatorial clustering” Quantum Inf. Processing 17 (2018) 39)

Coupling terms

➡ Probability (0 or 1) of ith track to have come from kth p-p collision is pik. Element pik is represented by a qubit

➡ g(D(i, j); m) seeks to distribute the couplings evenly without changing order. Else, lots of small couplings and some 
large couplings for p-p finding problem. Not for all clustering problems. Empirically seen to improve results with m = 5



➡ Coupling between two qubits pik and pjk that represent association of two tracks to same p-p collision k is a distance 
measure between the tracks D(i, j). Punish associations corresponding to widely separated tracks

➡ D(i, j) is Manhattan distance attenuated by uncertainty

Track clustering QUBO formulation for D-Wave 6

➡ Bias per qubit comes from λ term enforcing one track associated with one p-p collision. λ = 1.2 max(D(i, j)) is optimal
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PRIMARY VERTEXING AT THE LHC WITH A QUANTUM COMPUTER
DEPARTMENT OF PHYSICS AND ASTRONOMY

Souvik Das, Andrew J. Wildridge, Sachin B. Vaidya, Andreas Jung

ABSTRACT: Clustering of charged particle tracks along the beam axis is the first step in reconstructing the positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a 
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of event 
topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles to reaching modern hadron collider event complexities and suggest research directions to overcome each.

PRIMARY VERTEXING AT THE LARGE HADRON COLLIDER 

~ 8 cm

Representative event in CMS with charged particle tracks from 78 collisions

• The LHC circulates protons inside its beam-pipes in 
bunches. Each bunch contains 100 billion protons 
(2012 run)

• When counter-rotating bunches cross, only 
~ 20 protons collide

• Each p-p collision emits charged particles that are 
detected as tracks by experiments like the Compact 
Muon Solenoid (CMS)

PRIMARY VERTEXING:
Which tracks come from which p-p collision?
Where exactly are the p-p collision positions?The CMS apparatus with person for scale

THE D-WAVE 2048 QUBIT QUANTUM COMPUTER

of the spins, respectively, and the biases hi and couplings
Jij encode a particular optimization problem. The time-
dependent variation of Δ and E is parametrized by s≡ t=tf
with time t ∈ ½0; tf" and total run (anneal) time tf. QA is
performed by first setting Δ ≫ E, which results in a ground
state into which the spins can be easily initialized [6]. Then
Δ is reduced and E is increased until E ≫ Δ. At this point,
the system Hamiltonian is dominated by HP, which
represents the encoded optimization problem. At the end
of the evolution, a ground state ofHP represents the lowest
energy configuration for the problem Hamiltonian and thus
a solution to the optimization problem.

III. QUANTUM ANNEALING PROCESSOR

We have built a processor that implements HS using
superconducting flux qubits as effective spins [6,7,23,24].
Figure 1(a) shows a photograph of the processor. Figure 1(c)
shows the circuit schematic of a pair of flux qubits with the
magnetic flux controls Φx

qi and Φx
ccjj. The annealing param-

eter s is controlled with the global bias Φx
ccjjðtÞ (see

Appendix A for the mapping between s and Φx
ccjj and a

description of how Φx
qi is provided for each qubit). The

strength and sign of the inductive coupling between pairs of
qubits is controlled with magnetic fluxΦx

co;ij that is provided
by an individual on-chip digital-to-analog converter for
each coupler [8]. The parameters hi and Jij are thus in situ
tunable, thereby allowing the encoding of a vast number of
problems. The time-dependent energy scales ΔðsÞ and EðsÞ
are calculated from measured qubit parameters and plotted
in Fig. 1(d). We calibrate and correct the individual flux
qubit parameters in our processor to ensure that every qubit
has a close-to-identical Δ and E (the energy gap Δ is
balanced to better than 8% between qubits and E to better
than 5%). See Appendix A for measurements of these
energy scales. The interqubit couplers are calibrated as
described in Ref. [25]. The processor we study here is
mounted on the mixing chamber of a dilution refrigerator
held at temperature T ¼ 12.5 mK.

IV. FERROMAGNETICALLY COUPLED
INSTANCES

The experiments reported herein focus on one of the
eight-qubit unit cells of the larger QA processor as
indicated in Fig. 1(a). The unit cell is isolated by setting
all couplings outside of that subsection to Jij ¼ 0 for all
experiments. We then pose specific HP instances with
strong ferromagnetic (FM) coupling Jij ¼ −2.5 and hi ¼ 0
to that unit cell, as illustrated in Figs. 1(e) and 1(f). These
configurations produce coupled two- and eight-qubit sys-
tems, respectively. The Hamiltonian (1) describes the
behavior of these systems during QA.
Typical observations of entanglement in the quantum

computing literature involve applying interactions between

FIG. 1. (a) Photograph of the QA processor used in this
study. We report measurements performed on the eight-qubit
unit cell indicated. The bodies of the qubits are extended
loops of Nb wiring (highlighted with red rectangles). Inter-
qubit couplers are located at the intersections of the qubit
bodies. (b) Electron micrograph showing the cross section of
a typical portion of the processor circuitry (described in more
detail in Appendix A). (c) Schematic diagram of a pair of
coupled superconducting flux qubits with external control
biases Φx

qi and Φx
ccjj and with flux through the body of the ith

qubit denoted as Φqi. An inductive coupling between the
qubits is tuned with the bias Φx

co;ij. (d) Energy scales ΔðsÞ
and EðsÞ in Hamiltonian (1) calculated from a rf SQUID
model based on the median of independently measured device
parameters for these eight qubits. See Appendix A for more
details. (e),(f) The two- and eight-qubit systems studied were
programmed to have the topologies shown. Qubits are
represented as gold spheres, and interqubit couplers, set to
J ¼ −2.5, are represented as silver lines.

T. LANTING et al. PHYS. REV. X 4, 021041 (2014)

021041-2

Schematic of a pair of superconducting flux 
qubits coupled by a programmable inductor
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Next generation architecture signi�cantly enhances connectivity
Chimera C16 - DW 2000Q Pegasus P6 - 680 Qubit Prototype

� most signi�cant architecture change since �rst processor D-Wave One
� enabled by major technology changes in fabrication stack
� have demonstrated P6 prototype
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Processor mounted on dilution refrigerator
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The goal of quantum annealing (QA): model the Hamiltonian
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Technical Description of the D-Wave Quantum Processing Unit

Figure 2.15: A 3 � 3 � 4 Chimera graph. Nodes in an M � N � L Chimera graph represent each of the
2MNL qubits, qi. Edges (connections between nodes) in the graph, Ji,j, indicate couplings that may
be nonzero. As an example, J3,4 may be nonzero because an edge connects qubits 3 and 4, but J2,3
must always be zero because no edge connects qubits 2 and 3. The basic repeating block of Chimera
(a block of 2L variables with complete bipartite connectivity) may be tiled into an M � N lattice. The
left-side variables within each block connect vertically; the right-side variables, horizontally.

Figure 2.16: Each qubit has 6 couplers, 4 within and 2 between unit cells.

D-Wave User Manual 09-1109A-M
Copyright © D-Wave Systems Inc.
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Connectivity between qubits

PROBLEM FORMULATION AND OPTIMIZATION RESULTS

CONCLUSIONS AND OUTLOOK
Track clustering with a quantum annealer for primary vertex reconstruction at

hadron colliders

S. Das,� A. J. Wildridge, S. B. Vaidya, and A. Jung†

Department of Physics and Astronomy, Purdue University

(Dated: March 25, 2019)

Clustering of charged particle tracks along the beam axis is the first step in reconstructing the
positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of
primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of
event topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles
to reaching modern hadron collider event complexities and suggest research directions to overcome
each.

INTRODUCTION

Hadron colliders circulate counter-rotating beams of
hadrons in closely packed bunches that cross at desig-
nated interaction points. These interaction points are
instrumented with experimental apparatuses that detect
particles produced at hadron-hadron collisions when the
bunches cross. Reconstructing the positions of these col-
lisions within a bunch crossing, also known as primary
vertices, from the trajectories of charged particles de-
tected by the apparatuses is of paramount importance
for physics analyses. The Large Hadron Collider (LHC)
is a high luminosity collider that produces an average of
20 proton-proton (p-p) collisions at each bunch crossing,
distributed in one dimension along the beam axis. At
one of the LHC interaction points, the Compact Muon
Solenoid experiment (CMS) reconstructs the paths of
charged particles from p-p collisions as tracks detected
by its silicon tracker [1]. Track reconstruction uncertain-
ties obscure which tracks originated together at a primary
vertex. Thus, primary vertex reconstruction begins with
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2

during which quantum tunneling leaves the system in a
low energy configuration at the end of the annealing pro-
cess [10]. We measure the final state of the qubits as
a solution, and repeat several times. The lowest energy
solution is then taken as the best one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version
of this algorithm has been described by V. Kumar, et
al [11]. Further, we distort the Hamiltonian to encour-
age annealing to the ground state given the clustering
characteristics of tracks observed at CMS. Given current
technological limitations, we cannot cluster thousands of
tracks into 20 or more primary vertices as expected at
the LHC. We show how our method scales with event
complexity by testing it on a variety of event topologies
from 2 primary vertices and 10 tracks to 5 primary ver-
tices and 15 tracks, where the positions of vertices and
tracks are drawn from measured distributions at CMS.

Finally, we discuss three obstacles for solving event
complexities relevant in high luminosity hadron collider
experiments and suggest directions of investigation to
overcome each. Extended to two dimensions, the method
be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
ticle showers. Research in this direction may acceler-
ate both quantum information science and high energy
physics instrumentation.
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is the number of
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2 [0, 1] is the probability of the ith track to
be associated with the kth vertex, and D(i, j) is a mea-
sure of distance between the reconstructed z0 parameters
of the ith and jth tracks. For one-dimensional clustering,
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CMS distributions of track z0 around vertices tend to
cluster D(i, j) near zero. This results in a cluster of en-
ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p

ik

for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p

ik

add up to 1 for all tracks; these are checked
o✏ine by a CPU and marked as invalid.

If each p
ik

is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
14] and can be re-used for multiple events. We need to
program n

V

n
T

logical qubits and n
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n
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(n
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+ n
T

� 2)/2
couplings between them to encode H

p

.

RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].
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• Adiabatic quantum computing exploits:
A system in ground state of a Hamiltonian evolves to 

ground state of perturbed Hamiltonian if perturbation is slow

• Quantum annealing is a practical approximation to adiabatic 
quantum computing in finite time, open system. Finds low-
energy states of interacting spin system using thermally-
assisted quantum tunneling

• D-Wave 2000Q processor contains 2048 artificial spins 
made from Nb RF-SQUIDs. Bias to each spin (hi) and 
couplings between spins (Jij) are programmable

• Physical reasons limit connectivity

• System prepared in ground state of “transverse” 
Hamiltonian. Turned off while turning on problem 
Hamiltonian.

• Spin Hamiltonian trivially shifted to quadratic unconstrained binary optimization (QUBO) form.

• Problem mapped from logical qubits to physical qubits to 
mitigate thermal bit flips using D-Wave’s proprietary algorithms

0 1 2p-p collision number: 

Tracks “cutting” beam axis
at physical positions 
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• Objective function we minimize for clustering tracks to 
collisions is naturally in QUBO form

• pik is binary probability of track i associated with collision k. 
Represented by a qubit

• D(i, j) is measure of distance between tracks i and j. 
Uncertainties of track reconstruction are included

• λ enforces one track associated to one collision. 
Optimal λ = 1.2 × max(D(i, j))

• g(x; m) distorts D(i, j) to increase smaller values, thus 
making intermediate states approximately equidistant 
depending on m. Seen to improve solution convergence

Problem Hamiltonian in QUBO form

Distance measure between tracks

Distortion function to optimize convergence

• Algorithm tested on artificial events drawn from simulated 
and measured LHC distributions of collision positions and 
tracks

• Realistic track reconstruction uncertainties used
CMS Collaboration, JINST 9 (2014) P10009

• Illustration shows quantum annealing output for event 
with 3 collisions and 15 tracks

• Quantum state prepared and annealed 10,000 times.
• Annealing time = 20 µs
• Readout time = 123 µs
• Re-thermalization delay = 21 µs

• 6,825 solutions are valid, i.e. !k pik = 1 for all tracks

• 6,615 solutions are correct. Efficiency = 66%

• Small number of valid secondary solutions where one 
track has been misassociated

• Solution’s pik is track association to p-p collisions. 
Combined with zi and δzi, collision positions can be 
estimated

Energy spectrum of quantum annealing solutions 
for one event with 3 collisions and 15 tracks. 

How is this efficiency distributed?

• We consider an ensemble of 100 events with 3 collisions 
and 15 tracks thrown from measured CMS distributions

• Events with collisions spaced closely compared to track 
uncertainties are difficult for the QPU to resolve

• Results in a distribution of efficiencies with a mean of 42% 
and a standard deviation of 25%

Histogram of QPU convergence efficiency to the 
correct solution for 3 collisions and 15 tracks using 
100 events

How does solution finding efficiency scale?

• We repeated investigation for seven event topologies: 

• Complexity characterized by number of logical qubits

• Increasing complexity results in lower solution finding 
efficiency. Implies more annealing cycles needed. 

• For efficiency ϵ, to obtain at least 1 correct answer with 
95% certainty, we need N samples:

3

As an illustration of the algorithm, consider an event
with 3 vertices where 5 tracks emanate from each vertex.
This requires 45 logical qubits to encode. The biases
and couplings between them are obtained from Eq. 4 in
QUBO form. It takes 8 ms to program them into the
QPU. Sampling the QPU for solutions consists of an-
nealing as described in Eq. 3, readout of the qubits, and
a delay for re-thermalizing the qubits to mitigate inter-
sample correlations. Annealing is allowed for 20 µs by
default. Readout takes 123 µs, and the delay is set to 21
µs. 10,000 sampling cycles are performed. The energy
spectrum of the solutions, of which 6,825 are valid (where
p

ik

add up to 1 for every track) is shown in Fig. 1. The
energy scale is set by B(1) as defined in Eq. 3, which is
6h GHz in the QPU used for this study. Of the valid so-
lutions, 6,615 have landed on the lowest energy solution,
marked as “Solution 1” in the figure. On investigating
the qubit states, we find that the lowest energy solution
corresponds to the correct clustering of the tracks with
their respective vertices. Thus, the e�ciency of finding
the correct solution is noted as 66%. A small number
of valid solutions correspond to “Solution 2” where one
track has been misassociated with a vertex. Further mis-
associations result in higher energy valid solutions in the
spectrum.

Next, we consider an ensemble of 100 such events with
3 primary vertices and 15 tracks thrown from measured
CMS distributions. Events with vertices spaced closely
together compared to the spread of their tracks are dif-
ficult for the QPU to solve correctly and result in lower
convergence e�ciencies than events where vertices are
widely separated. This results in a distribution of ef-
ficiencies shown in Fig. 2 with a mean of 42% and a
standard deviation of 25%.

To characterize how this e�ciency depends on event
complexity, we repeated our investigation for six other
event topologies: 2 vertices and 10 tracks, 2 vertices 16
tracks, 3 vertices 9 tracks, 4 vertices 12 tracks, 4 vertices
16 tracks, and 5 vertices 15 tracks. With increasing com-
plexity, measured by the number of logical qubits needed,
we observe a decreasing e�ciency shown in Fig. 3. The
trend has been empirically fitted to a quadratic form.

We determine the time it takes to solve an event on
the QPU by finding the number of samples needed to
obtain at least 1 correct answer with 95% certainty. This
is estimated from the convergence e�ciency. Assuming
a binomial distribution around the mean convergence ef-
ficiency ✏, we calculate the number of samples needed to
be

N = log1�✏

0.05. (7)

Thus, while we need 2 samples (330 µs) for events with
2 vertices and 10 or 16 tracks, and 3 samples (490 µs)
for events with 3 vertices and 9 tracks, we need approx-
imately 10,000 samples (1.6 s) for events with 5 vertices
and 15 tracks.

FIG. 1. The energy spectrum of solutions for one event with
3 primary vertices and 15 tracks explored by the QPU with
10,000 samples. Energies corresponding to valid solutions,
where the pik add up to 1 for every track, are plotted with
solid lines while invalid solutions are plotted with dashed lines.
The best and next-to-best valid solutions are indicated as So-
lutions 1 and 2, respectively. For clarity, the histogram is
binned by 1 GHz below 20 GHz, by 10 GHz for 20 – 30 GHz,
and by 50 GHz above 30 GHz. Events in 10 (50) GHz bins
are normalized by 10 (50).

FIG. 2. A histogram of QPU convergence e�ciency to the
correct solution for the case of 3 primary vertices and 15 tracks
using 100 events.

Dependence of solution finding efficiency on track 
clustering problem complexity measured in the 
number of logical qubits used

Track clustering, first step of vertexing at the LHC, finds 
a  natural implementation on a quantum annealer.

• Track association to p-p collision recovered
• p-p collision positions reconstructed from track 

positions that belong to a collision

LHC produces 1000s of tracks, 20 or more collisions per 
bunch-crossing. Three obstacles to scaling up:

• Obstacle 1. Decreasing solution finding efficiency with 
event complexity. Research paths:

• Find theoretical model of how energy spacing between 
states affect annealing to the ground state

• Modified annealing schedule to kick system out of local 
minima with wide tunneling barriers

• Obstacle 2. Failure of graph embedding from logical to 
physical qubits. Research paths:

• Customize graph embedding algorithm
• Delay annealing of long chains of qubits
• D-Wave Pegasus processor with 5,000+ qubits and 15 

connections per qubit will alleviate this

• Obstacle 3. Limited numbers of qubits. Research path:
• Hierarchical application of clustering algorithm
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Figure 1: Illustration of the penalty D(i, j) imposed by the problem Hamiltonian in Eq. 4 when widely separated tracks in z0, zi and zj are
associated with the same p-p collision. Collisions are labeled by integers from 0 to nV � 1. The algorithm solves for the association matrix
pik where i is the track index and k is the collision index.

multaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land in
the ground state of H

p

if this change is su�ciently gradual,
the ground state is unique with a non-zero energy separa-
tion from other states, and the initial state of the qubits is
the ground state of the initial field [6, 7, 8]. These condi-
tions are di�cult to achieve experimentally. We therefore
anneal within tens of microseconds during which quantum
tunneling leaves the system in a low energy configuration
at the end of the annealing process [9]. We measure the
final state of the qubits as a solution, and repeat several
times. The lowest energy solution is then taken as the best
one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version of
this algorithm has been described by V. Kumar, et al [10].
Further, we distort the Hamiltonian to encourage anneal-
ing to the ground state given the clustering characteristics
of tracks observed at CMS. Given current technological
limitations, we cannot cluster thousands of tracks into 20
or more primary vertices as expected at the LHC. We show
how our method scales with event complexity by testing
it on a variety of event topologies from 2 primary ver-
tices and 10 tracks to 5 primary vertices and 15 tracks,
where the positions of vertices and tracks are drawn from
measured distributions at CMS. Our algorithm is not a
quantum-classical hybrid, and relies entirely on thermally
assisted quantum tunneling. This allows us to benchmark

it clearly against simulated annealing running on a mod-
ern CPU in the same period of time as a sampling cycle
on the QPU.

Finally, we discuss three directions of research to im-
prove this algorithm to solve event complexities relevant
in high luminosity hadron collider experiments. Extended
to two dimensions, the method can be used for other high
energy physics applications like clustering energy deposits
in calorimeters to identify particle showers. Research in
this direction may accelerate both quantum information
science and high energy physics instrumentation.

2. Formulation

For track clustering, we seek the ground state of the
problem Hamiltonian

H
p

=
nVX

k

nTX

i

nTX

j>i

p
ik

p
jk

g(D(i, j); m)

+�

nTX

i

 
1 �

nVX

k

p
ik

!2

,

(4)

where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to be
associated with the kth vertex, and D(i, j) is a measure of
distance between the reconstructed z0 parameters of the
ith and jth tracks.

As in any clustering algorithm, a density threshold of
tracks must be set that determines n

V

. In this paper, we
order the tracks in z0 and count the number of gaps greater
than a threshold of 5 mm. n

V

is set to this number plus
one.

For D(i, j), we find the absolute distance between z
i

and z
j

divided by the quadrature sum of the measurement
uncertainties �z

i

and �z
j

to be an e↵ective measure:

D(i, j) =
|z

i

� z
j

|q
�z2

i

+ �z2
j

. (5)

CMS distributions of track z0 around vertices tend to clus-
ter D(i, j) near zero. This results in a cluster of energy
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ABSTRACT: Clustering of charged particle tracks along the beam axis is the first step in reconstructing the positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a 
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of event 
topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles to reaching modern hadron collider event complexities and suggest research directions to overcome each.

PRIMARY VERTEXING AT THE LARGE HADRON COLLIDER 

~ 8 cm

Representative event in CMS with charged particle tracks from 78 collisions

• The LHC circulates protons inside its beam-pipes in 
bunches. Each bunch contains 100 billion protons 
(2012 run)

• When counter-rotating bunches cross, only 
~ 20 protons collide

• Each p-p collision emits charged particles that are 
detected as tracks by experiments like the Compact 
Muon Solenoid (CMS)

PRIMARY VERTEXING:
Which tracks come from which p-p collision?
Where exactly are the p-p collision positions?The CMS apparatus with person for scale

THE D-WAVE 2048 QUBIT QUANTUM COMPUTER

of the spins, respectively, and the biases hi and couplings
Jij encode a particular optimization problem. The time-
dependent variation of Δ and E is parametrized by s≡ t=tf
with time t ∈ ½0; tf" and total run (anneal) time tf. QA is
performed by first setting Δ ≫ E, which results in a ground
state into which the spins can be easily initialized [6]. Then
Δ is reduced and E is increased until E ≫ Δ. At this point,
the system Hamiltonian is dominated by HP, which
represents the encoded optimization problem. At the end
of the evolution, a ground state ofHP represents the lowest
energy configuration for the problem Hamiltonian and thus
a solution to the optimization problem.

III. QUANTUM ANNEALING PROCESSOR

We have built a processor that implements HS using
superconducting flux qubits as effective spins [6,7,23,24].
Figure 1(a) shows a photograph of the processor. Figure 1(c)
shows the circuit schematic of a pair of flux qubits with the
magnetic flux controls Φx

qi and Φx
ccjj. The annealing param-

eter s is controlled with the global bias Φx
ccjjðtÞ (see

Appendix A for the mapping between s and Φx
ccjj and a

description of how Φx
qi is provided for each qubit). The

strength and sign of the inductive coupling between pairs of
qubits is controlled with magnetic fluxΦx

co;ij that is provided
by an individual on-chip digital-to-analog converter for
each coupler [8]. The parameters hi and Jij are thus in situ
tunable, thereby allowing the encoding of a vast number of
problems. The time-dependent energy scales ΔðsÞ and EðsÞ
are calculated from measured qubit parameters and plotted
in Fig. 1(d). We calibrate and correct the individual flux
qubit parameters in our processor to ensure that every qubit
has a close-to-identical Δ and E (the energy gap Δ is
balanced to better than 8% between qubits and E to better
than 5%). See Appendix A for measurements of these
energy scales. The interqubit couplers are calibrated as
described in Ref. [25]. The processor we study here is
mounted on the mixing chamber of a dilution refrigerator
held at temperature T ¼ 12.5 mK.

IV. FERROMAGNETICALLY COUPLED
INSTANCES

The experiments reported herein focus on one of the
eight-qubit unit cells of the larger QA processor as
indicated in Fig. 1(a). The unit cell is isolated by setting
all couplings outside of that subsection to Jij ¼ 0 for all
experiments. We then pose specific HP instances with
strong ferromagnetic (FM) coupling Jij ¼ −2.5 and hi ¼ 0
to that unit cell, as illustrated in Figs. 1(e) and 1(f). These
configurations produce coupled two- and eight-qubit sys-
tems, respectively. The Hamiltonian (1) describes the
behavior of these systems during QA.
Typical observations of entanglement in the quantum

computing literature involve applying interactions between

FIG. 1. (a) Photograph of the QA processor used in this
study. We report measurements performed on the eight-qubit
unit cell indicated. The bodies of the qubits are extended
loops of Nb wiring (highlighted with red rectangles). Inter-
qubit couplers are located at the intersections of the qubit
bodies. (b) Electron micrograph showing the cross section of
a typical portion of the processor circuitry (described in more
detail in Appendix A). (c) Schematic diagram of a pair of
coupled superconducting flux qubits with external control
biases Φx

qi and Φx
ccjj and with flux through the body of the ith

qubit denoted as Φqi. An inductive coupling between the
qubits is tuned with the bias Φx

co;ij. (d) Energy scales ΔðsÞ
and EðsÞ in Hamiltonian (1) calculated from a rf SQUID
model based on the median of independently measured device
parameters for these eight qubits. See Appendix A for more
details. (e),(f) The two- and eight-qubit systems studied were
programmed to have the topologies shown. Qubits are
represented as gold spheres, and interqubit couplers, set to
J ¼ −2.5, are represented as silver lines.

T. LANTING et al. PHYS. REV. X 4, 021041 (2014)

021041-2

Schematic of a pair of superconducting flux 
qubits coupled by a programmable inductor

Copyright © D-Wave Systems Inc.

Next generation architecture signi�cantly enhances connectivity
Chimera C16 - DW 2000Q Pegasus P6 - 680 Qubit Prototype

� most signi�cant architecture change since �rst processor D-Wave One
� enabled by major technology changes in fabrication stack
� have demonstrated P6 prototype
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Processor mounted on dilution refrigerator
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The goal of quantum annealing (QA): model the Hamiltonian

HS(s) = �1
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Quantum Computation”
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Technical Description of the D-Wave Quantum Processing Unit

Figure 2.15: A 3 � 3 � 4 Chimera graph. Nodes in an M � N � L Chimera graph represent each of the
2MNL qubits, qi. Edges (connections between nodes) in the graph, Ji,j, indicate couplings that may
be nonzero. As an example, J3,4 may be nonzero because an edge connects qubits 3 and 4, but J2,3
must always be zero because no edge connects qubits 2 and 3. The basic repeating block of Chimera
(a block of 2L variables with complete bipartite connectivity) may be tiled into an M � N lattice. The
left-side variables within each block connect vertically; the right-side variables, horizontally.

Figure 2.16: Each qubit has 6 couplers, 4 within and 2 between unit cells.

D-Wave User Manual 09-1109A-M
Copyright © D-Wave Systems Inc.
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Connectivity between qubits

PROBLEM FORMULATION AND OPTIMIZATION RESULTS

CONCLUSIONS AND OUTLOOK
Track clustering with a quantum annealer for primary vertex reconstruction at

hadron colliders

S. Das,� A. J. Wildridge, S. B. Vaidya, and A. Jung†

Department of Physics and Astronomy, Purdue University

(Dated: March 25, 2019)

Clustering of charged particle tracks along the beam axis is the first step in reconstructing the
positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of
primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of
event topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles
to reaching modern hadron collider event complexities and suggest research directions to overcome
each.

INTRODUCTION

Hadron colliders circulate counter-rotating beams of
hadrons in closely packed bunches that cross at desig-
nated interaction points. These interaction points are
instrumented with experimental apparatuses that detect
particles produced at hadron-hadron collisions when the
bunches cross. Reconstructing the positions of these col-
lisions within a bunch crossing, also known as primary
vertices, from the trajectories of charged particles de-
tected by the apparatuses is of paramount importance
for physics analyses. The Large Hadron Collider (LHC)
is a high luminosity collider that produces an average of
20 proton-proton (p-p) collisions at each bunch crossing,
distributed in one dimension along the beam axis. At
one of the LHC interaction points, the Compact Muon
Solenoid experiment (CMS) reconstructs the paths of
charged particles from p-p collisions as tracks detected
by its silicon tracker [1]. Track reconstruction uncertain-
ties obscure which tracks originated together at a primary
vertex. Thus, primary vertex reconstruction begins with
a one-dimensional clustering of tracks by their positions
along the beam axis where they approach it most closely,
also known as the tracks’ z0. In the CMS experiment,
this clustering is done on a classical computer using a
deterministic annealing algorithm that mimics a physi-
cal system approaching its lowest energy state iteratively
through a series of cooling operations [2]. In this Letter,
we demonstrate a method of performing this clustering
in one step on a D-Wave quantum annealer and report
preliminary results.

The D-Wave 2000Q quantum computer, available from
D-Wave Inc., performs computations through quantum
annealing [3–5]. The quantum processing unit (QPU)
has 2048 RF-SQUID flux qubits implemented as super-
conducting niobium loops [6]. Each qubit has a pro-
grammable external magnetic field to bias it. The net-
work of qubits is not fully connected and programmable
couplings have been implemented between 6016 pairs of
qubits. A computational problem is defined by setting
the biases (h

i

) and couplings (J
ij

) such that the ground

state of the qubits’ Hamiltonian corresponds to the solu-
tion. We call this the “problem Hamiltonian” (H

p

)

H
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X
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X
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z
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, (1)

where �i

z

is a spin projection observable of the ith qubit
with eigenvalues +1 and -1. (This z direction is not
related to the beam axis at CMS.) It may be trivially
mapped to a bit observable q

i

with eigenvalues 0 and
1 through the shift 2q

i

= �i

z

+ I, where I is the iden-
tity matrix. The problem Hamiltonian may then be ex-
pressed for quadratic unconstrained binary optimization
(QUBO) as

H
p
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X

i
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i

q
i

+
X

i

X
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b
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q
i
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, (2)

notwithstanding energy o↵sets that are irrelevant for op-
timization. The D-Wave 2000Q programming model al-
lows us to specify a problem in QUBO form by specifying
a

i

and b
ij

.
At the beginning of a typical annealing cycle in the

QPU, a driver Hamiltonian puts all qubits in a superpo-
sition of the computational basis states by introducing a
global energy bias in the transverse x�direction. Anneal-
ing proceeds by lowering this driver Hamiltonian which
simultaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land
in the ground state of H

p

if this change is su�ciently
gradual, the ground state is unique with a non-zero en-
ergy separation from other states, and the initial state
of the qubits is the ground state of the initial field [7–
9]. These conditions are di�cult to achieve experimen-
tally. We therefore anneal within tens of microseconds
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lisions within a bunch crossing, also known as primary
vertices, from the trajectories of charged particles de-
tected by the apparatuses is of paramount importance
for physics analyses. The Large Hadron Collider (LHC)
is a high luminosity collider that produces an average of
20 proton-proton (p-p) collisions at each bunch crossing,
distributed in one dimension along the beam axis. At
one of the LHC interaction points, the Compact Muon
Solenoid experiment (CMS) reconstructs the paths of
charged particles from p-p collisions as tracks detected
by its silicon tracker [1]. Track reconstruction uncertain-
ties obscure which tracks originated together at a primary
vertex. Thus, primary vertex reconstruction begins with
a one-dimensional clustering of tracks by their positions
along the beam axis where they approach it most closely,
also known as the tracks’ z0. In the CMS experiment,
this clustering is done on a classical computer using a
deterministic annealing algorithm that mimics a physi-
cal system approaching its lowest energy state iteratively
through a series of cooling operations [2]. In this Letter,
we demonstrate a method of performing this clustering
in one step on a D-Wave quantum annealer and report
preliminary results.

The D-Wave 2000Q quantum computer, available from
D-Wave Inc., performs computations through quantum
annealing [3–5]. The quantum processing unit (QPU)
has 2048 RF-SQUID flux qubits implemented as super-
conducting niobium loops [6]. Each qubit has a pro-
grammable external magnetic field to bias it. The net-
work of qubits is not fully connected and programmable
couplings have been implemented between 6016 pairs of
qubits. A computational problem is defined by setting
the biases (h

i

) and couplings (J
ij

) such that the ground

state of the qubits’ Hamiltonian corresponds to the solu-
tion. We call this the “problem Hamiltonian” (H

p

)
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where �i

z

is a spin projection observable of the ith qubit
with eigenvalues +1 and -1. (This z direction is not
related to the beam axis at CMS.) It may be trivially
mapped to a bit observable q

i

with eigenvalues 0 and
1 through the shift 2q
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+ I, where I is the iden-
tity matrix. The problem Hamiltonian may then be ex-
pressed for quadratic unconstrained binary optimization
(QUBO) as
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notwithstanding energy o↵sets that are irrelevant for op-
timization. The D-Wave 2000Q programming model al-
lows us to specify a problem in QUBO form by specifying
a

i

and b
ij

.
At the beginning of a typical annealing cycle in the

QPU, a driver Hamiltonian puts all qubits in a superpo-
sition of the computational basis states by introducing a
global energy bias in the transverse x�direction. Anneal-
ing proceeds by lowering this driver Hamiltonian which
simultaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land
in the ground state of H

p

if this change is su�ciently
gradual, the ground state is unique with a non-zero en-
ergy separation from other states, and the initial state
of the qubits is the ground state of the initial field [7–
9]. These conditions are di�cult to achieve experimen-
tally. We therefore anneal within tens of microseconds

2

during which quantum tunneling leaves the system in a
low energy configuration at the end of the annealing pro-
cess [10]. We measure the final state of the qubits as
a solution, and repeat several times. The lowest energy
solution is then taken as the best one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version
of this algorithm has been described by V. Kumar, et
al [11]. Further, we distort the Hamiltonian to encour-
age annealing to the ground state given the clustering
characteristics of tracks observed at CMS. Given current
technological limitations, we cannot cluster thousands of
tracks into 20 or more primary vertices as expected at
the LHC. We show how our method scales with event
complexity by testing it on a variety of event topologies
from 2 primary vertices and 10 tracks to 5 primary ver-
tices and 15 tracks, where the positions of vertices and
tracks are drawn from measured distributions at CMS.

Finally, we discuss three obstacles for solving event
complexities relevant in high luminosity hadron collider
experiments and suggest directions of investigation to
overcome each. Extended to two dimensions, the method
be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
ticle showers. Research in this direction may acceler-
ate both quantum information science and high energy
physics instrumentation.

FORMULATION

For track clustering, we seek the ground state of the
problem Hamiltonian
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where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to
be associated with the kth vertex, and D(i, j) is a mea-
sure of distance between the reconstructed z0 parameters
of the ith and jth tracks. For one-dimensional clustering,
we find the absolute distance between z

i

and z
j

divided
by the quadrature sum of the measurement uncertainties

�z
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to be an e↵ective measure:
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CMS distributions of track z0 around vertices tend to
cluster D(i, j) near zero. This results in a cluster of en-
ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p

ik

for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p

ik

add up to 1 for all tracks; these are checked
o✏ine by a CPU and marked as invalid.

If each p
ik

is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
14] and can be re-used for multiple events. We need to
program n

V

n
T

logical qubits and n
V

n
T

(n
V

+ n
T

� 2)/2
couplings between them to encode H

p

.

RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].
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a simulated distribution of p-p bunch crossings at the
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mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].
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cluster D(i, j) near zero. This results in a cluster of en-
ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p
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for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p
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o✏ine by a CPU and marked as invalid.
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is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
14] and can be re-used for multiple events. We need to
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RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].

• Adiabatic quantum computing exploits:
A system in ground state of a Hamiltonian evolves to 

ground state of perturbed Hamiltonian if perturbation is slow

• Quantum annealing is a practical approximation to adiabatic 
quantum computing in finite time, open system. Finds low-
energy states of interacting spin system using thermally-
assisted quantum tunneling

• D-Wave 2000Q processor contains 2048 artificial spins 
made from Nb RF-SQUIDs. Bias to each spin (hi) and 
couplings between spins (Jij) are programmable

• Physical reasons limit connectivity

• System prepared in ground state of “transverse” 
Hamiltonian. Turned off while turning on problem 
Hamiltonian.

• Spin Hamiltonian trivially shifted to quadratic unconstrained binary optimization (QUBO) form.

• Problem mapped from logical qubits to physical qubits to 
mitigate thermal bit flips using D-Wave’s proprietary algorithms

0 1 2p-p collision number: 

Tracks “cutting” beam axis
at physical positions 

LHC beam axis

pi0 pj0

zi zj

D(i, j)

• Objective function we minimize for clustering tracks to 
collisions is naturally in QUBO form

• pik is binary probability of track i associated with collision k. 
Represented by a qubit

• D(i, j) is measure of distance between tracks i and j. 
Uncertainties of track reconstruction are included

• λ enforces one track associated to one collision. 
Optimal λ = 1.2 × max(D(i, j))

• g(x; m) distorts D(i, j) to increase smaller values, thus 
making intermediate states approximately equidistant 
depending on m. Seen to improve solution convergence

Problem Hamiltonian in QUBO form

Distance measure between tracks

Distortion function to optimize convergence

• Algorithm tested on artificial events drawn from simulated 
and measured LHC distributions of collision positions and 
tracks

• Realistic track reconstruction uncertainties used
CMS Collaboration, JINST 9 (2014) P10009

• Illustration shows quantum annealing output for event 
with 3 collisions and 15 tracks

• Quantum state prepared and annealed 10,000 times.
• Annealing time = 20 µs
• Readout time = 123 µs
• Re-thermalization delay = 21 µs

• 6,825 solutions are valid, i.e. !k pik = 1 for all tracks

• 6,615 solutions are correct. Efficiency = 66%

• Small number of valid secondary solutions where one 
track has been misassociated

• Solution’s pik is track association to p-p collisions. 
Combined with zi and δzi, collision positions can be 
estimated

Energy spectrum of quantum annealing solutions 
for one event with 3 collisions and 15 tracks. 

How is this efficiency distributed?

• We consider an ensemble of 100 events with 3 collisions 
and 15 tracks thrown from measured CMS distributions

• Events with collisions spaced closely compared to track 
uncertainties are difficult for the QPU to resolve

• Results in a distribution of efficiencies with a mean of 42% 
and a standard deviation of 25%

Histogram of QPU convergence efficiency to the 
correct solution for 3 collisions and 15 tracks using 
100 events

How does solution finding efficiency scale?

• We repeated investigation for seven event topologies: 

• Complexity characterized by number of logical qubits

• Increasing complexity results in lower solution finding 
efficiency. Implies more annealing cycles needed. 

• For efficiency ϵ, to obtain at least 1 correct answer with 
95% certainty, we need N samples:

3

As an illustration of the algorithm, consider an event
with 3 vertices where 5 tracks emanate from each vertex.
This requires 45 logical qubits to encode. The biases
and couplings between them are obtained from Eq. 4 in
QUBO form. It takes 8 ms to program them into the
QPU. Sampling the QPU for solutions consists of an-
nealing as described in Eq. 3, readout of the qubits, and
a delay for re-thermalizing the qubits to mitigate inter-
sample correlations. Annealing is allowed for 20 µs by
default. Readout takes 123 µs, and the delay is set to 21
µs. 10,000 sampling cycles are performed. The energy
spectrum of the solutions, of which 6,825 are valid (where
p

ik

add up to 1 for every track) is shown in Fig. 1. The
energy scale is set by B(1) as defined in Eq. 3, which is
6h GHz in the QPU used for this study. Of the valid so-
lutions, 6,615 have landed on the lowest energy solution,
marked as “Solution 1” in the figure. On investigating
the qubit states, we find that the lowest energy solution
corresponds to the correct clustering of the tracks with
their respective vertices. Thus, the e�ciency of finding
the correct solution is noted as 66%. A small number
of valid solutions correspond to “Solution 2” where one
track has been misassociated with a vertex. Further mis-
associations result in higher energy valid solutions in the
spectrum.

Next, we consider an ensemble of 100 such events with
3 primary vertices and 15 tracks thrown from measured
CMS distributions. Events with vertices spaced closely
together compared to the spread of their tracks are dif-
ficult for the QPU to solve correctly and result in lower
convergence e�ciencies than events where vertices are
widely separated. This results in a distribution of ef-
ficiencies shown in Fig. 2 with a mean of 42% and a
standard deviation of 25%.

To characterize how this e�ciency depends on event
complexity, we repeated our investigation for six other
event topologies: 2 vertices and 10 tracks, 2 vertices 16
tracks, 3 vertices 9 tracks, 4 vertices 12 tracks, 4 vertices
16 tracks, and 5 vertices 15 tracks. With increasing com-
plexity, measured by the number of logical qubits needed,
we observe a decreasing e�ciency shown in Fig. 3. The
trend has been empirically fitted to a quadratic form.

We determine the time it takes to solve an event on
the QPU by finding the number of samples needed to
obtain at least 1 correct answer with 95% certainty. This
is estimated from the convergence e�ciency. Assuming
a binomial distribution around the mean convergence ef-
ficiency ✏, we calculate the number of samples needed to
be

N = log1�✏

0.05. (7)

Thus, while we need 2 samples (330 µs) for events with
2 vertices and 10 or 16 tracks, and 3 samples (490 µs)
for events with 3 vertices and 9 tracks, we need approx-
imately 10,000 samples (1.6 s) for events with 5 vertices
and 15 tracks.

FIG. 1. The energy spectrum of solutions for one event with
3 primary vertices and 15 tracks explored by the QPU with
10,000 samples. Energies corresponding to valid solutions,
where the pik add up to 1 for every track, are plotted with
solid lines while invalid solutions are plotted with dashed lines.
The best and next-to-best valid solutions are indicated as So-
lutions 1 and 2, respectively. For clarity, the histogram is
binned by 1 GHz below 20 GHz, by 10 GHz for 20 – 30 GHz,
and by 50 GHz above 30 GHz. Events in 10 (50) GHz bins
are normalized by 10 (50).

FIG. 2. A histogram of QPU convergence e�ciency to the
correct solution for the case of 3 primary vertices and 15 tracks
using 100 events.

Dependence of solution finding efficiency on track 
clustering problem complexity measured in the 
number of logical qubits used

Track clustering, first step of vertexing at the LHC, finds 
a  natural implementation on a quantum annealer.

• Track association to p-p collision recovered
• p-p collision positions reconstructed from track 

positions that belong to a collision

LHC produces 1000s of tracks, 20 or more collisions per 
bunch-crossing. Three obstacles to scaling up:

• Obstacle 1. Decreasing solution finding efficiency with 
event complexity. Research paths:

• Find theoretical model of how energy spacing between 
states affect annealing to the ground state

• Modified annealing schedule to kick system out of local 
minima with wide tunneling barriers

• Obstacle 2. Failure of graph embedding from logical to 
physical qubits. Research paths:

• Customize graph embedding algorithm
• Delay annealing of long chains of qubits
• D-Wave Pegasus processor with 5,000+ qubits and 15 

connections per qubit will alleviate this

• Obstacle 3. Limited numbers of qubits. Research path:
• Hierarchical application of clustering algorithm
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Figure 1: Illustration of the penalty D(i, j) imposed by the problem Hamiltonian in Eq. 4 when widely separated tracks in z0, zi and zj are
associated with the same p-p collision. Collisions are labeled by integers from 0 to nV � 1. The algorithm solves for the association matrix
pik where i is the track index and k is the collision index.

multaneously increasing the problem Hamiltonian as

H = A(s)
X

i
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x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land in
the ground state of H

p

if this change is su�ciently gradual,
the ground state is unique with a non-zero energy separa-
tion from other states, and the initial state of the qubits is
the ground state of the initial field [6, 7, 8]. These condi-
tions are di�cult to achieve experimentally. We therefore
anneal within tens of microseconds during which quantum
tunneling leaves the system in a low energy configuration
at the end of the annealing process [9]. We measure the
final state of the qubits as a solution, and repeat several
times. The lowest energy solution is then taken as the best
one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version of
this algorithm has been described by V. Kumar, et al [10].
Further, we distort the Hamiltonian to encourage anneal-
ing to the ground state given the clustering characteristics
of tracks observed at CMS. Given current technological
limitations, we cannot cluster thousands of tracks into 20
or more primary vertices as expected at the LHC. We show
how our method scales with event complexity by testing
it on a variety of event topologies from 2 primary ver-
tices and 10 tracks to 5 primary vertices and 15 tracks,
where the positions of vertices and tracks are drawn from
measured distributions at CMS. Our algorithm is not a
quantum-classical hybrid, and relies entirely on thermally
assisted quantum tunneling. This allows us to benchmark

it clearly against simulated annealing running on a mod-
ern CPU in the same period of time as a sampling cycle
on the QPU.

Finally, we discuss three directions of research to im-
prove this algorithm to solve event complexities relevant
in high luminosity hadron collider experiments. Extended
to two dimensions, the method can be used for other high
energy physics applications like clustering energy deposits
in calorimeters to identify particle showers. Research in
this direction may accelerate both quantum information
science and high energy physics instrumentation.

2. Formulation

For track clustering, we seek the ground state of the
problem Hamiltonian
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where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to be
associated with the kth vertex, and D(i, j) is a measure of
distance between the reconstructed z0 parameters of the
ith and jth tracks.

As in any clustering algorithm, a density threshold of
tracks must be set that determines n

V

. In this paper, we
order the tracks in z0 and count the number of gaps greater
than a threshold of 5 mm. n

V

is set to this number plus
one.

For D(i, j), we find the absolute distance between z
i

and z
j

divided by the quadrature sum of the measurement
uncertainties �z

i

and �z
j

to be an e↵ective measure:

D(i, j) =
|z

i

� z
j

|q
�z2

i

+ �z2
j

. (5)

CMS distributions of track z0 around vertices tend to clus-
ter D(i, j) near zero. This results in a cluster of energy

2

levels near the ground state. To distribute the energy lev-
els more uniformly, we use a distortion function on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as the
system anneals and is seen to improve convergence e�-
ciency. m is set to 5 for event topologies considered here.

� is a penalty parameter chosen to discourage p
ik

for
each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p

ik

add up to 1 for all tracks; these are checked o✏ine
by a CPU and marked as invalid.

If each p
ik

is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the prob-
lem Hamiltonian described in Eq 2. Therefore, it can
be directly programmed into a D-Wave QPU. A logical
qubit is one physical qubit or a set of strongly coupled
physical qubits created to compensate for the limited con-
nectivity of a single physical qubit and to mitigate bit
flips from thermal fluctuations. The graph embedding
used to map the network of logical qubits to the net-
work of physical qubits is found using default D-Wave
algorithms [11, 12, 13] and can be re-used for multiple
events. We need to program n

V

n
T

logical qubits and
n

V

n
T

(n
V

+ n
T

� 2)/2 couplings between them to encode
H

p

.

3. Results

To test the algorithm, we generate artificial events with
vertex positions in one dimension sampled from a simu-
lated distribution of p-p bunch crossings at the LHC inter-
action point within CMS. A Gaussian with 35 mm width
is a good representation of this distribution. The z0 pa-
rameter of toy tracks are sampled from Gaussians centered
around the generated vertices with widths corresponding
to realistic track resolutions measured in CMS [14]. These
widths range from 0.1 to 0.7 mm depending on the 3D mo-
mentum of the tracks, which are also sampled from mea-
sured track momentum distributions in CMS [14].

3.1. Primary vertexing one event

To illustrate the algorithm, we generate an event with
3 vertices where 5 tracks emanate from each vertex. This
requires 45 logical qubits to encode. The biases and cou-
plings between them are obtained from Eq. 4 in QUBO
form and displayed in Fig. 2.

It takes 8 ms to program the biases and couplings into
the QPU. Sampling the QPU for solutions consists of an-
nealing as described in Eq. 3, readout of the qubits, and

Figure 2: Biases and couplings between the logical qubits of the
QPU as coe�cients of the QUBO form used to solve a particular
event with 3 primary vertices and 15 tracks. The diagonal terms are
biases corresponding to the � term in Eq. 4.

Figure 3: Energy spectrum of solutions for one event with 3 primary
vertices and 15 tracks explored by the QPU with 10,000 samples.
Energies corresponding to valid solutions, where the pik add up to
1 for every track, are plotted with solid lines while invalid solutions
are plotted with dashed lines. Error bars correspond to statistical
uncertainties. The best and next-to-best valid solutions are indicated
as Solutions 1 and 2, respectively. For clarity, the histogram is binned
by 1 GHz below 10 GHz, by 10 GHz for 10 – 100 GHz, and by 100
GHz above 100 GHz. Events in 10 (100) GHz bins are normalized
by 10 (100).
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๏ Clustering problem naturally expressed in QUBO form (V. Kumar, et. al. “Quantum annealing for combinatorial clustering” Quantum Inf. Processing 17 (2018) 39)
Bias terms come from here

Coupling terms

➡ Probability (0 or 1) of ith track to have come from kth p-p collision is pik. Element pik is represented by a qubit

➡ g(D(i, j); m) seeks to distribute the couplings evenly without changing order. Else, lots of small couplings and some 
large couplings for p-p finding problem. Not for all clustering problems. Empirically seen to improve results with m = 5



➡ Coupling between two qubits pik and pjk that represent association of two tracks to same p-p collision k is a distance 
measure between the tracks D(i, j). Punish associations corresponding to widely separated tracks

➡ D(i, j) is Manhattan distance attenuated by uncertainty

Track clustering QUBO formulation for D-Wave 6

➡ Bias per qubit comes from λ term enforcing one track associated with one p-p collision. λ = 1.2 max(D(i, j)) is optimal
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ABSTRACT: Clustering of charged particle tracks along the beam axis is the first step in reconstructing the positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a 
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of event 
topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles to reaching modern hadron collider event complexities and suggest research directions to overcome each.

PRIMARY VERTEXING AT THE LARGE HADRON COLLIDER 

~ 8 cm

Representative event in CMS with charged particle tracks from 78 collisions

• The LHC circulates protons inside its beam-pipes in 
bunches. Each bunch contains 100 billion protons 
(2012 run)

• When counter-rotating bunches cross, only 
~ 20 protons collide

• Each p-p collision emits charged particles that are 
detected as tracks by experiments like the Compact 
Muon Solenoid (CMS)

PRIMARY VERTEXING:
Which tracks come from which p-p collision?
Where exactly are the p-p collision positions?The CMS apparatus with person for scale

THE D-WAVE 2048 QUBIT QUANTUM COMPUTER

of the spins, respectively, and the biases hi and couplings
Jij encode a particular optimization problem. The time-
dependent variation of Δ and E is parametrized by s≡ t=tf
with time t ∈ ½0; tf" and total run (anneal) time tf. QA is
performed by first setting Δ ≫ E, which results in a ground
state into which the spins can be easily initialized [6]. Then
Δ is reduced and E is increased until E ≫ Δ. At this point,
the system Hamiltonian is dominated by HP, which
represents the encoded optimization problem. At the end
of the evolution, a ground state ofHP represents the lowest
energy configuration for the problem Hamiltonian and thus
a solution to the optimization problem.

III. QUANTUM ANNEALING PROCESSOR

We have built a processor that implements HS using
superconducting flux qubits as effective spins [6,7,23,24].
Figure 1(a) shows a photograph of the processor. Figure 1(c)
shows the circuit schematic of a pair of flux qubits with the
magnetic flux controls Φx

qi and Φx
ccjj. The annealing param-

eter s is controlled with the global bias Φx
ccjjðtÞ (see

Appendix A for the mapping between s and Φx
ccjj and a

description of how Φx
qi is provided for each qubit). The

strength and sign of the inductive coupling between pairs of
qubits is controlled with magnetic fluxΦx

co;ij that is provided
by an individual on-chip digital-to-analog converter for
each coupler [8]. The parameters hi and Jij are thus in situ
tunable, thereby allowing the encoding of a vast number of
problems. The time-dependent energy scales ΔðsÞ and EðsÞ
are calculated from measured qubit parameters and plotted
in Fig. 1(d). We calibrate and correct the individual flux
qubit parameters in our processor to ensure that every qubit
has a close-to-identical Δ and E (the energy gap Δ is
balanced to better than 8% between qubits and E to better
than 5%). See Appendix A for measurements of these
energy scales. The interqubit couplers are calibrated as
described in Ref. [25]. The processor we study here is
mounted on the mixing chamber of a dilution refrigerator
held at temperature T ¼ 12.5 mK.

IV. FERROMAGNETICALLY COUPLED
INSTANCES

The experiments reported herein focus on one of the
eight-qubit unit cells of the larger QA processor as
indicated in Fig. 1(a). The unit cell is isolated by setting
all couplings outside of that subsection to Jij ¼ 0 for all
experiments. We then pose specific HP instances with
strong ferromagnetic (FM) coupling Jij ¼ −2.5 and hi ¼ 0
to that unit cell, as illustrated in Figs. 1(e) and 1(f). These
configurations produce coupled two- and eight-qubit sys-
tems, respectively. The Hamiltonian (1) describes the
behavior of these systems during QA.
Typical observations of entanglement in the quantum

computing literature involve applying interactions between

FIG. 1. (a) Photograph of the QA processor used in this
study. We report measurements performed on the eight-qubit
unit cell indicated. The bodies of the qubits are extended
loops of Nb wiring (highlighted with red rectangles). Inter-
qubit couplers are located at the intersections of the qubit
bodies. (b) Electron micrograph showing the cross section of
a typical portion of the processor circuitry (described in more
detail in Appendix A). (c) Schematic diagram of a pair of
coupled superconducting flux qubits with external control
biases Φx

qi and Φx
ccjj and with flux through the body of the ith

qubit denoted as Φqi. An inductive coupling between the
qubits is tuned with the bias Φx

co;ij. (d) Energy scales ΔðsÞ
and EðsÞ in Hamiltonian (1) calculated from a rf SQUID
model based on the median of independently measured device
parameters for these eight qubits. See Appendix A for more
details. (e),(f) The two- and eight-qubit systems studied were
programmed to have the topologies shown. Qubits are
represented as gold spheres, and interqubit couplers, set to
J ¼ −2.5, are represented as silver lines.

T. LANTING et al. PHYS. REV. X 4, 021041 (2014)

021041-2

Schematic of a pair of superconducting flux 
qubits coupled by a programmable inductor
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Processor mounted on dilution refrigerator
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Technical Description of the D-Wave Quantum Processing Unit

Figure 2.15: A 3 � 3 � 4 Chimera graph. Nodes in an M � N � L Chimera graph represent each of the
2MNL qubits, qi. Edges (connections between nodes) in the graph, Ji,j, indicate couplings that may
be nonzero. As an example, J3,4 may be nonzero because an edge connects qubits 3 and 4, but J2,3
must always be zero because no edge connects qubits 2 and 3. The basic repeating block of Chimera
(a block of 2L variables with complete bipartite connectivity) may be tiled into an M � N lattice. The
left-side variables within each block connect vertically; the right-side variables, horizontally.

Figure 2.16: Each qubit has 6 couplers, 4 within and 2 between unit cells.

D-Wave User Manual 09-1109A-M
Copyright © D-Wave Systems Inc.
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CONCLUSIONS AND OUTLOOK
Track clustering with a quantum annealer for primary vertex reconstruction at

hadron colliders
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Clustering of charged particle tracks along the beam axis is the first step in reconstructing the
positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of
primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of
event topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles
to reaching modern hadron collider event complexities and suggest research directions to overcome
each.

INTRODUCTION

Hadron colliders circulate counter-rotating beams of
hadrons in closely packed bunches that cross at desig-
nated interaction points. These interaction points are
instrumented with experimental apparatuses that detect
particles produced at hadron-hadron collisions when the
bunches cross. Reconstructing the positions of these col-
lisions within a bunch crossing, also known as primary
vertices, from the trajectories of charged particles de-
tected by the apparatuses is of paramount importance
for physics analyses. The Large Hadron Collider (LHC)
is a high luminosity collider that produces an average of
20 proton-proton (p-p) collisions at each bunch crossing,
distributed in one dimension along the beam axis. At
one of the LHC interaction points, the Compact Muon
Solenoid experiment (CMS) reconstructs the paths of
charged particles from p-p collisions as tracks detected
by its silicon tracker [1]. Track reconstruction uncertain-
ties obscure which tracks originated together at a primary
vertex. Thus, primary vertex reconstruction begins with
a one-dimensional clustering of tracks by their positions
along the beam axis where they approach it most closely,
also known as the tracks’ z0. In the CMS experiment,
this clustering is done on a classical computer using a
deterministic annealing algorithm that mimics a physi-
cal system approaching its lowest energy state iteratively
through a series of cooling operations [2]. In this Letter,
we demonstrate a method of performing this clustering
in one step on a D-Wave quantum annealer and report
preliminary results.

The D-Wave 2000Q quantum computer, available from
D-Wave Inc., performs computations through quantum
annealing [3–5]. The quantum processing unit (QPU)
has 2048 RF-SQUID flux qubits implemented as super-
conducting niobium loops [6]. Each qubit has a pro-
grammable external magnetic field to bias it. The net-
work of qubits is not fully connected and programmable
couplings have been implemented between 6016 pairs of
qubits. A computational problem is defined by setting
the biases (h

i

) and couplings (J
ij

) such that the ground

state of the qubits’ Hamiltonian corresponds to the solu-
tion. We call this the “problem Hamiltonian” (H

p

)
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where �i

z

is a spin projection observable of the ith qubit
with eigenvalues +1 and -1. (This z direction is not
related to the beam axis at CMS.) It may be trivially
mapped to a bit observable q

i

with eigenvalues 0 and
1 through the shift 2q

i
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z

+ I, where I is the iden-
tity matrix. The problem Hamiltonian may then be ex-
pressed for quadratic unconstrained binary optimization
(QUBO) as
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notwithstanding energy o↵sets that are irrelevant for op-
timization. The D-Wave 2000Q programming model al-
lows us to specify a problem in QUBO form by specifying
a

i

and b
ij

.
At the beginning of a typical annealing cycle in the

QPU, a driver Hamiltonian puts all qubits in a superpo-
sition of the computational basis states by introducing a
global energy bias in the transverse x�direction. Anneal-
ing proceeds by lowering this driver Hamiltonian which
simultaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land
in the ground state of H

p

if this change is su�ciently
gradual, the ground state is unique with a non-zero en-
ergy separation from other states, and the initial state
of the qubits is the ground state of the initial field [7–
9]. These conditions are di�cult to achieve experimen-
tally. We therefore anneal within tens of microseconds
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during which quantum tunneling leaves the system in a
low energy configuration at the end of the annealing pro-
cess [10]. We measure the final state of the qubits as
a solution, and repeat several times. The lowest energy
solution is then taken as the best one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version
of this algorithm has been described by V. Kumar, et
al [11]. Further, we distort the Hamiltonian to encour-
age annealing to the ground state given the clustering
characteristics of tracks observed at CMS. Given current
technological limitations, we cannot cluster thousands of
tracks into 20 or more primary vertices as expected at
the LHC. We show how our method scales with event
complexity by testing it on a variety of event topologies
from 2 primary vertices and 10 tracks to 5 primary ver-
tices and 15 tracks, where the positions of vertices and
tracks are drawn from measured distributions at CMS.

Finally, we discuss three obstacles for solving event
complexities relevant in high luminosity hadron collider
experiments and suggest directions of investigation to
overcome each. Extended to two dimensions, the method
be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
ticle showers. Research in this direction may acceler-
ate both quantum information science and high energy
physics instrumentation.
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CMS distributions of track z0 around vertices tend to
cluster D(i, j) near zero. This results in a cluster of en-
ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p
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for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p
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add up to 1 for all tracks; these are checked
o✏ine by a CPU and marked as invalid.

If each p
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is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
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the network of logical qubits to the network of physi-
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RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].
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experiments and suggest directions of investigation to
overcome each. Extended to two dimensions, the method
be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
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with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
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characteristics of tracks observed at CMS. Given current
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tracks into 20 or more primary vertices as expected at
the LHC. We show how our method scales with event
complexity by testing it on a variety of event topologies
from 2 primary vertices and 10 tracks to 5 primary ver-
tices and 15 tracks, where the positions of vertices and
tracks are drawn from measured distributions at CMS.

Finally, we discuss three obstacles for solving event
complexities relevant in high luminosity hadron collider
experiments and suggest directions of investigation to
overcome each. Extended to two dimensions, the method
be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
ticle showers. Research in this direction may acceler-
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2 [0, 1] is the probability of the ith track to
be associated with the kth vertex, and D(i, j) is a mea-
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CMS distributions of track z0 around vertices tend to
cluster D(i, j) near zero. This results in a cluster of en-
ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p
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for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p

ik

add up to 1 for all tracks; these are checked
o✏ine by a CPU and marked as invalid.

If each p
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is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
14] and can be re-used for multiple events. We need to
program n
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logical qubits and n
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RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].

• Adiabatic quantum computing exploits:
A system in ground state of a Hamiltonian evolves to 

ground state of perturbed Hamiltonian if perturbation is slow

• Quantum annealing is a practical approximation to adiabatic 
quantum computing in finite time, open system. Finds low-
energy states of interacting spin system using thermally-
assisted quantum tunneling

• D-Wave 2000Q processor contains 2048 artificial spins 
made from Nb RF-SQUIDs. Bias to each spin (hi) and 
couplings between spins (Jij) are programmable

• Physical reasons limit connectivity

• System prepared in ground state of “transverse” 
Hamiltonian. Turned off while turning on problem 
Hamiltonian.

• Spin Hamiltonian trivially shifted to quadratic unconstrained binary optimization (QUBO) form.

• Problem mapped from logical qubits to physical qubits to 
mitigate thermal bit flips using D-Wave’s proprietary algorithms

0 1 2p-p collision number: 

Tracks “cutting” beam axis
at physical positions 

LHC beam axis

pi0 pj0

zi zj

D(i, j)

• Objective function we minimize for clustering tracks to 
collisions is naturally in QUBO form

• pik is binary probability of track i associated with collision k. 
Represented by a qubit

• D(i, j) is measure of distance between tracks i and j. 
Uncertainties of track reconstruction are included

• λ enforces one track associated to one collision. 
Optimal λ = 1.2 × max(D(i, j))

• g(x; m) distorts D(i, j) to increase smaller values, thus 
making intermediate states approximately equidistant 
depending on m. Seen to improve solution convergence

Problem Hamiltonian in QUBO form

Distance measure between tracks

Distortion function to optimize convergence

• Algorithm tested on artificial events drawn from simulated 
and measured LHC distributions of collision positions and 
tracks

• Realistic track reconstruction uncertainties used
CMS Collaboration, JINST 9 (2014) P10009

• Illustration shows quantum annealing output for event 
with 3 collisions and 15 tracks

• Quantum state prepared and annealed 10,000 times.
• Annealing time = 20 µs
• Readout time = 123 µs
• Re-thermalization delay = 21 µs

• 6,825 solutions are valid, i.e. !k pik = 1 for all tracks

• 6,615 solutions are correct. Efficiency = 66%

• Small number of valid secondary solutions where one 
track has been misassociated

• Solution’s pik is track association to p-p collisions. 
Combined with zi and δzi, collision positions can be 
estimated

Energy spectrum of quantum annealing solutions 
for one event with 3 collisions and 15 tracks. 

How is this efficiency distributed?

• We consider an ensemble of 100 events with 3 collisions 
and 15 tracks thrown from measured CMS distributions

• Events with collisions spaced closely compared to track 
uncertainties are difficult for the QPU to resolve

• Results in a distribution of efficiencies with a mean of 42% 
and a standard deviation of 25%

Histogram of QPU convergence efficiency to the 
correct solution for 3 collisions and 15 tracks using 
100 events

How does solution finding efficiency scale?

• We repeated investigation for seven event topologies: 

• Complexity characterized by number of logical qubits

• Increasing complexity results in lower solution finding 
efficiency. Implies more annealing cycles needed. 

• For efficiency ϵ, to obtain at least 1 correct answer with 
95% certainty, we need N samples:

3

As an illustration of the algorithm, consider an event
with 3 vertices where 5 tracks emanate from each vertex.
This requires 45 logical qubits to encode. The biases
and couplings between them are obtained from Eq. 4 in
QUBO form. It takes 8 ms to program them into the
QPU. Sampling the QPU for solutions consists of an-
nealing as described in Eq. 3, readout of the qubits, and
a delay for re-thermalizing the qubits to mitigate inter-
sample correlations. Annealing is allowed for 20 µs by
default. Readout takes 123 µs, and the delay is set to 21
µs. 10,000 sampling cycles are performed. The energy
spectrum of the solutions, of which 6,825 are valid (where
p

ik

add up to 1 for every track) is shown in Fig. 1. The
energy scale is set by B(1) as defined in Eq. 3, which is
6h GHz in the QPU used for this study. Of the valid so-
lutions, 6,615 have landed on the lowest energy solution,
marked as “Solution 1” in the figure. On investigating
the qubit states, we find that the lowest energy solution
corresponds to the correct clustering of the tracks with
their respective vertices. Thus, the e�ciency of finding
the correct solution is noted as 66%. A small number
of valid solutions correspond to “Solution 2” where one
track has been misassociated with a vertex. Further mis-
associations result in higher energy valid solutions in the
spectrum.

Next, we consider an ensemble of 100 such events with
3 primary vertices and 15 tracks thrown from measured
CMS distributions. Events with vertices spaced closely
together compared to the spread of their tracks are dif-
ficult for the QPU to solve correctly and result in lower
convergence e�ciencies than events where vertices are
widely separated. This results in a distribution of ef-
ficiencies shown in Fig. 2 with a mean of 42% and a
standard deviation of 25%.

To characterize how this e�ciency depends on event
complexity, we repeated our investigation for six other
event topologies: 2 vertices and 10 tracks, 2 vertices 16
tracks, 3 vertices 9 tracks, 4 vertices 12 tracks, 4 vertices
16 tracks, and 5 vertices 15 tracks. With increasing com-
plexity, measured by the number of logical qubits needed,
we observe a decreasing e�ciency shown in Fig. 3. The
trend has been empirically fitted to a quadratic form.

We determine the time it takes to solve an event on
the QPU by finding the number of samples needed to
obtain at least 1 correct answer with 95% certainty. This
is estimated from the convergence e�ciency. Assuming
a binomial distribution around the mean convergence ef-
ficiency ✏, we calculate the number of samples needed to
be

N = log1�✏

0.05. (7)

Thus, while we need 2 samples (330 µs) for events with
2 vertices and 10 or 16 tracks, and 3 samples (490 µs)
for events with 3 vertices and 9 tracks, we need approx-
imately 10,000 samples (1.6 s) for events with 5 vertices
and 15 tracks.

FIG. 1. The energy spectrum of solutions for one event with
3 primary vertices and 15 tracks explored by the QPU with
10,000 samples. Energies corresponding to valid solutions,
where the pik add up to 1 for every track, are plotted with
solid lines while invalid solutions are plotted with dashed lines.
The best and next-to-best valid solutions are indicated as So-
lutions 1 and 2, respectively. For clarity, the histogram is
binned by 1 GHz below 20 GHz, by 10 GHz for 20 – 30 GHz,
and by 50 GHz above 30 GHz. Events in 10 (50) GHz bins
are normalized by 10 (50).

FIG. 2. A histogram of QPU convergence e�ciency to the
correct solution for the case of 3 primary vertices and 15 tracks
using 100 events.

Dependence of solution finding efficiency on track 
clustering problem complexity measured in the 
number of logical qubits used

Track clustering, first step of vertexing at the LHC, finds 
a  natural implementation on a quantum annealer.

• Track association to p-p collision recovered
• p-p collision positions reconstructed from track 

positions that belong to a collision

LHC produces 1000s of tracks, 20 or more collisions per 
bunch-crossing. Three obstacles to scaling up:

• Obstacle 1. Decreasing solution finding efficiency with 
event complexity. Research paths:

• Find theoretical model of how energy spacing between 
states affect annealing to the ground state

• Modified annealing schedule to kick system out of local 
minima with wide tunneling barriers

• Obstacle 2. Failure of graph embedding from logical to 
physical qubits. Research paths:

• Customize graph embedding algorithm
• Delay annealing of long chains of qubits
• D-Wave Pegasus processor with 5,000+ qubits and 15 

connections per qubit will alleviate this

• Obstacle 3. Limited numbers of qubits. Research path:
• Hierarchical application of clustering algorithm

Physical Qubits
(log scale) D-Wave One 

128 

D-Wave Two
512

28
16

4

D-Wave 2X
1000 

1

10

100

1,000

10,000

D-Wave 2000Q
2000

Next Gen
5000+ 

~20

9
Gate Model

[72]

‘04 ‘08 ‘12 ‘16 ‘18‘06 ‘10 ‘14 ‘20

D-Wave continues to Scale

Copyright © D-Wave Systems Inc.

Publication: Track clustering with a quantum annealer for primary 
vertex reconstruction at hadron colliders

https://arxiv.org/abs/1903.08879

D-Wave 2000Q processor D-Wave Pegasus processor

Scaling of D-Wave processors

Top-heavy Uniform Bottom-heavy

Energy

Figure 2. Top-heavy, uniform, and bottom-heavy 
solution energy distributions. Which quantum-
anneals most efficiently to the ground state?

Figure 1. Dependence of quantum annealing 
convergence efficiency with track clustering 
problem complexity

E0

E1

E2

E3

Solution space

Energy

Wide, short barrier
Narrow, tall barrier

tunneling

Cartoon of energy profile in solution space. 
Tunneling is easy through narrow, tall barriers. 
Classically difficult.

Top-heavy Uniform Bottom-heavy

Energy

Figure 2. Top-heavy, uniform, and bottom-heavy 
solution energy distributions. Which quantum-
anneals most efficiently to the ground state?

Figure 1. Dependence of quantum annealing 
convergence efficiency with track clustering 
problem complexity

E0

E1

E2

E3

Solution space

Energy

Wide, short barrier
Narrow, tall barrier

tunneling

Top-heavy, uniform, or bottom-heavy energy 
distributions: Which anneals fastest?

Figure 1: Illustration of the penalty D(i, j) imposed by the problem Hamiltonian in Eq. 4 when widely separated tracks in z0, zi and zj are
associated with the same p-p collision. Collisions are labeled by integers from 0 to nV � 1. The algorithm solves for the association matrix
pik where i is the track index and k is the collision index.

multaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land in
the ground state of H

p

if this change is su�ciently gradual,
the ground state is unique with a non-zero energy separa-
tion from other states, and the initial state of the qubits is
the ground state of the initial field [6, 7, 8]. These condi-
tions are di�cult to achieve experimentally. We therefore
anneal within tens of microseconds during which quantum
tunneling leaves the system in a low energy configuration
at the end of the annealing process [9]. We measure the
final state of the qubits as a solution, and repeat several
times. The lowest energy solution is then taken as the best
one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version of
this algorithm has been described by V. Kumar, et al [10].
Further, we distort the Hamiltonian to encourage anneal-
ing to the ground state given the clustering characteristics
of tracks observed at CMS. Given current technological
limitations, we cannot cluster thousands of tracks into 20
or more primary vertices as expected at the LHC. We show
how our method scales with event complexity by testing
it on a variety of event topologies from 2 primary ver-
tices and 10 tracks to 5 primary vertices and 15 tracks,
where the positions of vertices and tracks are drawn from
measured distributions at CMS. Our algorithm is not a
quantum-classical hybrid, and relies entirely on thermally
assisted quantum tunneling. This allows us to benchmark

it clearly against simulated annealing running on a mod-
ern CPU in the same period of time as a sampling cycle
on the QPU.

Finally, we discuss three directions of research to im-
prove this algorithm to solve event complexities relevant
in high luminosity hadron collider experiments. Extended
to two dimensions, the method can be used for other high
energy physics applications like clustering energy deposits
in calorimeters to identify particle showers. Research in
this direction may accelerate both quantum information
science and high energy physics instrumentation.

2. Formulation

For track clustering, we seek the ground state of the
problem Hamiltonian
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where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to be
associated with the kth vertex, and D(i, j) is a measure of
distance between the reconstructed z0 parameters of the
ith and jth tracks.

As in any clustering algorithm, a density threshold of
tracks must be set that determines n

V

. In this paper, we
order the tracks in z0 and count the number of gaps greater
than a threshold of 5 mm. n

V

is set to this number plus
one.

For D(i, j), we find the absolute distance between z
i

and z
j

divided by the quadrature sum of the measurement
uncertainties �z

i

and �z
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to be an e↵ective measure:
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CMS distributions of track z0 around vertices tend to clus-
ter D(i, j) near zero. This results in a cluster of energy
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PRIMARY VERTEXING AT THE LHC WITH A QUANTUM COMPUTER
DEPARTMENT OF PHYSICS AND ASTRONOMY

Souvik Das, Andrew J. Wildridge, Sachin B. Vaidya, Andreas Jung

ABSTRACT: Clustering of charged particle tracks along the beam axis is the first step in reconstructing the positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a 
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of event 
topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles to reaching modern hadron collider event complexities and suggest research directions to overcome each.

PRIMARY VERTEXING AT THE LARGE HADRON COLLIDER 

~ 8 cm

Representative event in CMS with charged particle tracks from 78 collisions

• The LHC circulates protons inside its beam-pipes in 
bunches. Each bunch contains 100 billion protons 
(2012 run)

• When counter-rotating bunches cross, only 
~ 20 protons collide

• Each p-p collision emits charged particles that are 
detected as tracks by experiments like the Compact 
Muon Solenoid (CMS)

PRIMARY VERTEXING:
Which tracks come from which p-p collision?
Where exactly are the p-p collision positions?The CMS apparatus with person for scale

THE D-WAVE 2048 QUBIT QUANTUM COMPUTER

of the spins, respectively, and the biases hi and couplings
Jij encode a particular optimization problem. The time-
dependent variation of Δ and E is parametrized by s≡ t=tf
with time t ∈ ½0; tf" and total run (anneal) time tf. QA is
performed by first setting Δ ≫ E, which results in a ground
state into which the spins can be easily initialized [6]. Then
Δ is reduced and E is increased until E ≫ Δ. At this point,
the system Hamiltonian is dominated by HP, which
represents the encoded optimization problem. At the end
of the evolution, a ground state ofHP represents the lowest
energy configuration for the problem Hamiltonian and thus
a solution to the optimization problem.

III. QUANTUM ANNEALING PROCESSOR

We have built a processor that implements HS using
superconducting flux qubits as effective spins [6,7,23,24].
Figure 1(a) shows a photograph of the processor. Figure 1(c)
shows the circuit schematic of a pair of flux qubits with the
magnetic flux controls Φx

qi and Φx
ccjj. The annealing param-

eter s is controlled with the global bias Φx
ccjjðtÞ (see

Appendix A for the mapping between s and Φx
ccjj and a

description of how Φx
qi is provided for each qubit). The

strength and sign of the inductive coupling between pairs of
qubits is controlled with magnetic fluxΦx

co;ij that is provided
by an individual on-chip digital-to-analog converter for
each coupler [8]. The parameters hi and Jij are thus in situ
tunable, thereby allowing the encoding of a vast number of
problems. The time-dependent energy scales ΔðsÞ and EðsÞ
are calculated from measured qubit parameters and plotted
in Fig. 1(d). We calibrate and correct the individual flux
qubit parameters in our processor to ensure that every qubit
has a close-to-identical Δ and E (the energy gap Δ is
balanced to better than 8% between qubits and E to better
than 5%). See Appendix A for measurements of these
energy scales. The interqubit couplers are calibrated as
described in Ref. [25]. The processor we study here is
mounted on the mixing chamber of a dilution refrigerator
held at temperature T ¼ 12.5 mK.

IV. FERROMAGNETICALLY COUPLED
INSTANCES

The experiments reported herein focus on one of the
eight-qubit unit cells of the larger QA processor as
indicated in Fig. 1(a). The unit cell is isolated by setting
all couplings outside of that subsection to Jij ¼ 0 for all
experiments. We then pose specific HP instances with
strong ferromagnetic (FM) coupling Jij ¼ −2.5 and hi ¼ 0
to that unit cell, as illustrated in Figs. 1(e) and 1(f). These
configurations produce coupled two- and eight-qubit sys-
tems, respectively. The Hamiltonian (1) describes the
behavior of these systems during QA.
Typical observations of entanglement in the quantum

computing literature involve applying interactions between

FIG. 1. (a) Photograph of the QA processor used in this
study. We report measurements performed on the eight-qubit
unit cell indicated. The bodies of the qubits are extended
loops of Nb wiring (highlighted with red rectangles). Inter-
qubit couplers are located at the intersections of the qubit
bodies. (b) Electron micrograph showing the cross section of
a typical portion of the processor circuitry (described in more
detail in Appendix A). (c) Schematic diagram of a pair of
coupled superconducting flux qubits with external control
biases Φx

qi and Φx
ccjj and with flux through the body of the ith

qubit denoted as Φqi. An inductive coupling between the
qubits is tuned with the bias Φx

co;ij. (d) Energy scales ΔðsÞ
and EðsÞ in Hamiltonian (1) calculated from a rf SQUID
model based on the median of independently measured device
parameters for these eight qubits. See Appendix A for more
details. (e),(f) The two- and eight-qubit systems studied were
programmed to have the topologies shown. Qubits are
represented as gold spheres, and interqubit couplers, set to
J ¼ −2.5, are represented as silver lines.
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021041-2

Schematic of a pair of superconducting flux 
qubits coupled by a programmable inductor
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Next generation architecture signi�cantly enhances connectivity
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� enabled by major technology changes in fabrication stack
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Processor mounted on dilution refrigerator
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Technical Description of the D-Wave Quantum Processing Unit

Figure 2.15: A 3 � 3 � 4 Chimera graph. Nodes in an M � N � L Chimera graph represent each of the
2MNL qubits, qi. Edges (connections between nodes) in the graph, Ji,j, indicate couplings that may
be nonzero. As an example, J3,4 may be nonzero because an edge connects qubits 3 and 4, but J2,3
must always be zero because no edge connects qubits 2 and 3. The basic repeating block of Chimera
(a block of 2L variables with complete bipartite connectivity) may be tiled into an M � N lattice. The
left-side variables within each block connect vertically; the right-side variables, horizontally.

Figure 2.16: Each qubit has 6 couplers, 4 within and 2 between unit cells.

D-Wave User Manual 09-1109A-M
Copyright © D-Wave Systems Inc.
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CONCLUSIONS AND OUTLOOK
Track clustering with a quantum annealer for primary vertex reconstruction at

hadron colliders
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Clustering of charged particle tracks along the beam axis is the first step in reconstructing the
positions of hadronic interactions, also known as primary vertices, at hadron colliders. We use a
2048 qubit quantum annealer to perform track clustering on artificial events where the positions of
primary vertices and tracks are drawn from measured LHC distributions. We test it on a variety of
event topologies up to 5 primary vertices and 15 tracks to establish scaling. We identify 3 obstacles
to reaching modern hadron collider event complexities and suggest research directions to overcome
each.

INTRODUCTION

Hadron colliders circulate counter-rotating beams of
hadrons in closely packed bunches that cross at desig-
nated interaction points. These interaction points are
instrumented with experimental apparatuses that detect
particles produced at hadron-hadron collisions when the
bunches cross. Reconstructing the positions of these col-
lisions within a bunch crossing, also known as primary
vertices, from the trajectories of charged particles de-
tected by the apparatuses is of paramount importance
for physics analyses. The Large Hadron Collider (LHC)
is a high luminosity collider that produces an average of
20 proton-proton (p-p) collisions at each bunch crossing,
distributed in one dimension along the beam axis. At
one of the LHC interaction points, the Compact Muon
Solenoid experiment (CMS) reconstructs the paths of
charged particles from p-p collisions as tracks detected
by its silicon tracker [1]. Track reconstruction uncertain-
ties obscure which tracks originated together at a primary
vertex. Thus, primary vertex reconstruction begins with
a one-dimensional clustering of tracks by their positions
along the beam axis where they approach it most closely,
also known as the tracks’ z0. In the CMS experiment,
this clustering is done on a classical computer using a
deterministic annealing algorithm that mimics a physi-
cal system approaching its lowest energy state iteratively
through a series of cooling operations [2]. In this Letter,
we demonstrate a method of performing this clustering
in one step on a D-Wave quantum annealer and report
preliminary results.

The D-Wave 2000Q quantum computer, available from
D-Wave Inc., performs computations through quantum
annealing [3–5]. The quantum processing unit (QPU)
has 2048 RF-SQUID flux qubits implemented as super-
conducting niobium loops [6]. Each qubit has a pro-
grammable external magnetic field to bias it. The net-
work of qubits is not fully connected and programmable
couplings have been implemented between 6016 pairs of
qubits. A computational problem is defined by setting
the biases (h

i

) and couplings (J
ij

) such that the ground

state of the qubits’ Hamiltonian corresponds to the solu-
tion. We call this the “problem Hamiltonian” (H

p

)
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where �i

z

is a spin projection observable of the ith qubit
with eigenvalues +1 and -1. (This z direction is not
related to the beam axis at CMS.) It may be trivially
mapped to a bit observable q

i

with eigenvalues 0 and
1 through the shift 2q

i

= �i

z

+ I, where I is the iden-
tity matrix. The problem Hamiltonian may then be ex-
pressed for quadratic unconstrained binary optimization
(QUBO) as
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notwithstanding energy o↵sets that are irrelevant for op-
timization. The D-Wave 2000Q programming model al-
lows us to specify a problem in QUBO form by specifying
a

i

and b
ij

.
At the beginning of a typical annealing cycle in the

QPU, a driver Hamiltonian puts all qubits in a superpo-
sition of the computational basis states by introducing a
global energy bias in the transverse x�direction. Anneal-
ing proceeds by lowering this driver Hamiltonian which
simultaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land
in the ground state of H

p

if this change is su�ciently
gradual, the ground state is unique with a non-zero en-
ergy separation from other states, and the initial state
of the qubits is the ground state of the initial field [7–
9]. These conditions are di�cult to achieve experimen-
tally. We therefore anneal within tens of microseconds
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2

during which quantum tunneling leaves the system in a
low energy configuration at the end of the annealing pro-
cess [10]. We measure the final state of the qubits as
a solution, and repeat several times. The lowest energy
solution is then taken as the best one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version
of this algorithm has been described by V. Kumar, et
al [11]. Further, we distort the Hamiltonian to encour-
age annealing to the ground state given the clustering
characteristics of tracks observed at CMS. Given current
technological limitations, we cannot cluster thousands of
tracks into 20 or more primary vertices as expected at
the LHC. We show how our method scales with event
complexity by testing it on a variety of event topologies
from 2 primary vertices and 10 tracks to 5 primary ver-
tices and 15 tracks, where the positions of vertices and
tracks are drawn from measured distributions at CMS.

Finally, we discuss three obstacles for solving event
complexities relevant in high luminosity hadron collider
experiments and suggest directions of investigation to
overcome each. Extended to two dimensions, the method
be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
ticle showers. Research in this direction may acceler-
ate both quantum information science and high energy
physics instrumentation.

FORMULATION

For track clustering, we seek the ground state of the
problem Hamiltonian
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where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to
be associated with the kth vertex, and D(i, j) is a mea-
sure of distance between the reconstructed z0 parameters
of the ith and jth tracks. For one-dimensional clustering,
we find the absolute distance between z

i

and z
j

divided
by the quadrature sum of the measurement uncertainties

�z
i

and �z
j

to be an e↵ective measure:

D(i, j) =
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� z
j
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�z2

i

+ �z2
j

. (5)

CMS distributions of track z0 around vertices tend to
cluster D(i, j) near zero. This results in a cluster of en-
ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p

ik

for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p

ik

add up to 1 for all tracks; these are checked
o✏ine by a CPU and marked as invalid.

If each p
ik

is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
14] and can be re-used for multiple events. We need to
program n

V

n
T

logical qubits and n
V

n
T

(n
V

+ n
T

� 2)/2
couplings between them to encode H

p

.

RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].
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of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
14] and can be re-used for multiple events. We need to
program n

V
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logical qubits and n
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RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].
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during which quantum tunneling leaves the system in a
low energy configuration at the end of the annealing pro-
cess [10]. We measure the final state of the qubits as
a solution, and repeat several times. The lowest energy
solution is then taken as the best one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version
of this algorithm has been described by V. Kumar, et
al [11]. Further, we distort the Hamiltonian to encour-
age annealing to the ground state given the clustering
characteristics of tracks observed at CMS. Given current
technological limitations, we cannot cluster thousands of
tracks into 20 or more primary vertices as expected at
the LHC. We show how our method scales with event
complexity by testing it on a variety of event topologies
from 2 primary vertices and 10 tracks to 5 primary ver-
tices and 15 tracks, where the positions of vertices and
tracks are drawn from measured distributions at CMS.

Finally, we discuss three obstacles for solving event
complexities relevant in high luminosity hadron collider
experiments and suggest directions of investigation to
overcome each. Extended to two dimensions, the method
be used for other high energy physics applications like
clustering energy deposits in calorimeters to identify par-
ticle showers. Research in this direction may acceler-
ate both quantum information science and high energy
physics instrumentation.
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For track clustering, we seek the ground state of the
problem Hamiltonian

H
p

=
nVX

k

nTX

i

nTX

j>i

p
ik

p
jk

g(D(i, j); m)

+�

nTX

i

 
1 �

nVX

k

p
ik

!2

,

(4)

where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to
be associated with the kth vertex, and D(i, j) is a mea-
sure of distance between the reconstructed z0 parameters
of the ith and jth tracks. For one-dimensional clustering,
we find the absolute distance between z

i

and z
j

divided
by the quadrature sum of the measurement uncertainties

�z
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and �z
j

to be an e↵ective measure:
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CMS distributions of track z0 around vertices tend to
cluster D(i, j) near zero. This results in a cluster of en-
ergy levels near the ground state. To distribute the en-
ergy levels more uniformly, we use a distortion function
on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as
the system anneals and is seen to improve convergence
e�ciency. m is set to 5 for event topologies considered
here. � is a penalty parameter chosen to discourage p
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for each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p
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is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the problem
Hamiltonian described in Eq 2. Therefore, it can be di-
rectly programmed into a D-Wave QPU. A logical qubit
is one physical qubit or a set of strongly coupled physical
qubits created to compensate for the limited connectivity
of a single physical qubit and to mitigate bit flips from
thermal fluctuations. The graph embedding used to map
the network of logical qubits to the network of physi-
cal qubits is found using default D-Wave algorithms [12–
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RESULTS

To test the algorithm, we generate artificial events
with vertex positions in one dimension sampled from
a simulated distribution of p-p bunch crossings at the
LHC interaction point within CMS. A Gaussian with 35
mm width is a good representation of this distribution.
The z0 parameter of toy tracks are sampled from Gaus-
sians centered around the generated vertices with widths
corresponding to realistic track resolutions measured in
CMS [2]. These widths range from 0.1 to 0.7 mm depend-
ing on the 3D momentum of the tracks, which are also
sampled from measured track momentum distributions
in CMS [2].

• Adiabatic quantum computing exploits:
A system in ground state of a Hamiltonian evolves to 

ground state of perturbed Hamiltonian if perturbation is slow

• Quantum annealing is a practical approximation to adiabatic 
quantum computing in finite time, open system. Finds low-
energy states of interacting spin system using thermally-
assisted quantum tunneling

• D-Wave 2000Q processor contains 2048 artificial spins 
made from Nb RF-SQUIDs. Bias to each spin (hi) and 
couplings between spins (Jij) are programmable

• Physical reasons limit connectivity

• System prepared in ground state of “transverse” 
Hamiltonian. Turned off while turning on problem 
Hamiltonian.

• Spin Hamiltonian trivially shifted to quadratic unconstrained binary optimization (QUBO) form.

• Problem mapped from logical qubits to physical qubits to 
mitigate thermal bit flips using D-Wave’s proprietary algorithms

0 1 2p-p collision number: 

Tracks “cutting” beam axis
at physical positions 

LHC beam axis

pi0 pj0

zi zj

D(i, j)

• Objective function we minimize for clustering tracks to 
collisions is naturally in QUBO form

• pik is binary probability of track i associated with collision k. 
Represented by a qubit

• D(i, j) is measure of distance between tracks i and j. 
Uncertainties of track reconstruction are included

• λ enforces one track associated to one collision. 
Optimal λ = 1.2 × max(D(i, j))

• g(x; m) distorts D(i, j) to increase smaller values, thus 
making intermediate states approximately equidistant 
depending on m. Seen to improve solution convergence

Problem Hamiltonian in QUBO form

Distance measure between tracks

Distortion function to optimize convergence

• Algorithm tested on artificial events drawn from simulated 
and measured LHC distributions of collision positions and 
tracks

• Realistic track reconstruction uncertainties used
CMS Collaboration, JINST 9 (2014) P10009

• Illustration shows quantum annealing output for event 
with 3 collisions and 15 tracks

• Quantum state prepared and annealed 10,000 times.
• Annealing time = 20 µs
• Readout time = 123 µs
• Re-thermalization delay = 21 µs

• 6,825 solutions are valid, i.e. !k pik = 1 for all tracks

• 6,615 solutions are correct. Efficiency = 66%

• Small number of valid secondary solutions where one 
track has been misassociated

• Solution’s pik is track association to p-p collisions. 
Combined with zi and δzi, collision positions can be 
estimated

Energy spectrum of quantum annealing solutions 
for one event with 3 collisions and 15 tracks. 

How is this efficiency distributed?

• We consider an ensemble of 100 events with 3 collisions 
and 15 tracks thrown from measured CMS distributions

• Events with collisions spaced closely compared to track 
uncertainties are difficult for the QPU to resolve

• Results in a distribution of efficiencies with a mean of 42% 
and a standard deviation of 25%

Histogram of QPU convergence efficiency to the 
correct solution for 3 collisions and 15 tracks using 
100 events

How does solution finding efficiency scale?

• We repeated investigation for seven event topologies: 

• Complexity characterized by number of logical qubits

• Increasing complexity results in lower solution finding 
efficiency. Implies more annealing cycles needed. 

• For efficiency ϵ, to obtain at least 1 correct answer with 
95% certainty, we need N samples:

3

As an illustration of the algorithm, consider an event
with 3 vertices where 5 tracks emanate from each vertex.
This requires 45 logical qubits to encode. The biases
and couplings between them are obtained from Eq. 4 in
QUBO form. It takes 8 ms to program them into the
QPU. Sampling the QPU for solutions consists of an-
nealing as described in Eq. 3, readout of the qubits, and
a delay for re-thermalizing the qubits to mitigate inter-
sample correlations. Annealing is allowed for 20 µs by
default. Readout takes 123 µs, and the delay is set to 21
µs. 10,000 sampling cycles are performed. The energy
spectrum of the solutions, of which 6,825 are valid (where
p

ik

add up to 1 for every track) is shown in Fig. 1. The
energy scale is set by B(1) as defined in Eq. 3, which is
6h GHz in the QPU used for this study. Of the valid so-
lutions, 6,615 have landed on the lowest energy solution,
marked as “Solution 1” in the figure. On investigating
the qubit states, we find that the lowest energy solution
corresponds to the correct clustering of the tracks with
their respective vertices. Thus, the e�ciency of finding
the correct solution is noted as 66%. A small number
of valid solutions correspond to “Solution 2” where one
track has been misassociated with a vertex. Further mis-
associations result in higher energy valid solutions in the
spectrum.

Next, we consider an ensemble of 100 such events with
3 primary vertices and 15 tracks thrown from measured
CMS distributions. Events with vertices spaced closely
together compared to the spread of their tracks are dif-
ficult for the QPU to solve correctly and result in lower
convergence e�ciencies than events where vertices are
widely separated. This results in a distribution of ef-
ficiencies shown in Fig. 2 with a mean of 42% and a
standard deviation of 25%.

To characterize how this e�ciency depends on event
complexity, we repeated our investigation for six other
event topologies: 2 vertices and 10 tracks, 2 vertices 16
tracks, 3 vertices 9 tracks, 4 vertices 12 tracks, 4 vertices
16 tracks, and 5 vertices 15 tracks. With increasing com-
plexity, measured by the number of logical qubits needed,
we observe a decreasing e�ciency shown in Fig. 3. The
trend has been empirically fitted to a quadratic form.

We determine the time it takes to solve an event on
the QPU by finding the number of samples needed to
obtain at least 1 correct answer with 95% certainty. This
is estimated from the convergence e�ciency. Assuming
a binomial distribution around the mean convergence ef-
ficiency ✏, we calculate the number of samples needed to
be

N = log1�✏

0.05. (7)

Thus, while we need 2 samples (330 µs) for events with
2 vertices and 10 or 16 tracks, and 3 samples (490 µs)
for events with 3 vertices and 9 tracks, we need approx-
imately 10,000 samples (1.6 s) for events with 5 vertices
and 15 tracks.

FIG. 1. The energy spectrum of solutions for one event with
3 primary vertices and 15 tracks explored by the QPU with
10,000 samples. Energies corresponding to valid solutions,
where the pik add up to 1 for every track, are plotted with
solid lines while invalid solutions are plotted with dashed lines.
The best and next-to-best valid solutions are indicated as So-
lutions 1 and 2, respectively. For clarity, the histogram is
binned by 1 GHz below 20 GHz, by 10 GHz for 20 – 30 GHz,
and by 50 GHz above 30 GHz. Events in 10 (50) GHz bins
are normalized by 10 (50).

FIG. 2. A histogram of QPU convergence e�ciency to the
correct solution for the case of 3 primary vertices and 15 tracks
using 100 events.

Dependence of solution finding efficiency on track 
clustering problem complexity measured in the 
number of logical qubits used

Track clustering, first step of vertexing at the LHC, finds 
a  natural implementation on a quantum annealer.

• Track association to p-p collision recovered
• p-p collision positions reconstructed from track 

positions that belong to a collision

LHC produces 1000s of tracks, 20 or more collisions per 
bunch-crossing. Three obstacles to scaling up:

• Obstacle 1. Decreasing solution finding efficiency with 
event complexity. Research paths:

• Find theoretical model of how energy spacing between 
states affect annealing to the ground state

• Modified annealing schedule to kick system out of local 
minima with wide tunneling barriers

• Obstacle 2. Failure of graph embedding from logical to 
physical qubits. Research paths:

• Customize graph embedding algorithm
• Delay annealing of long chains of qubits
• D-Wave Pegasus processor with 5,000+ qubits and 15 

connections per qubit will alleviate this

• Obstacle 3. Limited numbers of qubits. Research path:
• Hierarchical application of clustering algorithm
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Figure 1: Illustration of the penalty D(i, j) imposed by the problem Hamiltonian in Eq. 4 when widely separated tracks in z0, zi and zj are
associated with the same p-p collision. Collisions are labeled by integers from 0 to nV � 1. The algorithm solves for the association matrix
pik where i is the track index and k is the collision index.

multaneously increasing the problem Hamiltonian as

H = A(s)
X

i

�i

x

+ B(s)H
p

, (3)

where A is a monotonically decreasing function and B is
a monotonically increasing function defined on s 2 [0, 1].
A and B have units of energy. The adiabatic theorem of
quantum mechanics guarantees that the qubits will land in
the ground state of H

p

if this change is su�ciently gradual,
the ground state is unique with a non-zero energy separa-
tion from other states, and the initial state of the qubits is
the ground state of the initial field [6, 7, 8]. These condi-
tions are di�cult to achieve experimentally. We therefore
anneal within tens of microseconds during which quantum
tunneling leaves the system in a low energy configuration
at the end of the annealing process [9]. We measure the
final state of the qubits as a solution, and repeat several
times. The lowest energy solution is then taken as the best
one.

We map track clustering to finding the ground state of
a problem Hamiltonian. The Hamiltonian, which may be
thought of as an objective function to minimize, is a mea-
sure of distances between the tracks given an association
matrix p

ik

between the ith track’s z0 {z
i

}, and candidate
vertices labeled by integer k. We discuss the case where
the matrix element p

ik

is 0 or 1 and hence expressed by
one bit. Given {z

i

} and the number of expected vertices,
the quantum annealer solves for p

ik

. A generic version of
this algorithm has been described by V. Kumar, et al [10].
Further, we distort the Hamiltonian to encourage anneal-
ing to the ground state given the clustering characteristics
of tracks observed at CMS. Given current technological
limitations, we cannot cluster thousands of tracks into 20
or more primary vertices as expected at the LHC. We show
how our method scales with event complexity by testing
it on a variety of event topologies from 2 primary ver-
tices and 10 tracks to 5 primary vertices and 15 tracks,
where the positions of vertices and tracks are drawn from
measured distributions at CMS. Our algorithm is not a
quantum-classical hybrid, and relies entirely on thermally
assisted quantum tunneling. This allows us to benchmark

it clearly against simulated annealing running on a mod-
ern CPU in the same period of time as a sampling cycle
on the QPU.

Finally, we discuss three directions of research to im-
prove this algorithm to solve event complexities relevant
in high luminosity hadron collider experiments. Extended
to two dimensions, the method can be used for other high
energy physics applications like clustering energy deposits
in calorimeters to identify particle showers. Research in
this direction may accelerate both quantum information
science and high energy physics instrumentation.

2. Formulation

For track clustering, we seek the ground state of the
problem Hamiltonian
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where n
T

is the number of tracks, n
V

is the number of
vertices, p

ik

2 [0, 1] is the probability of the ith track to be
associated with the kth vertex, and D(i, j) is a measure of
distance between the reconstructed z0 parameters of the
ith and jth tracks.

As in any clustering algorithm, a density threshold of
tracks must be set that determines n

V

. In this paper, we
order the tracks in z0 and count the number of gaps greater
than a threshold of 5 mm. n

V

is set to this number plus
one.

For D(i, j), we find the absolute distance between z
i

and z
j

divided by the quadrature sum of the measurement
uncertainties �z

i

and �z
j

to be an e↵ective measure:

D(i, j) =
|z

i

� z
j

|q
�z2

i

+ �z2
j

. (5)

CMS distributions of track z0 around vertices tend to clus-
ter D(i, j) near zero. This results in a cluster of energy

2

levels near the ground state. To distribute the energy lev-
els more uniformly, we use a distortion function on D(i, j)

g(x; m) = 1 � e�mx, (6)

where m is the distortion parameter. This reduces the
spread of energy drops between intermediate states as the
system anneals and is seen to improve convergence e�-
ciency. m is set to 5 for event topologies considered here.

� is a penalty parameter chosen to discourage p
ik

for
each track to add up to anything other than 1. While
it should be large enough to discourage the probability
of a single track to be assigned to multiple vertices, it
must not drown out the energy scale of D(i, j). We tried
several values of � from 1.0 to 2.0 times the maximum of
D(i, j) and settled on 1.2 times the maximum of D(i, j)
for optimal performance. Not all solutions from the QPU
have p

ik

add up to 1 for all tracks; these are checked o✏ine
by a CPU and marked as invalid.

If each p
ik

is represented by one logical qubit in the
QPU, Eq. 4 is already in the QUBO form of the prob-
lem Hamiltonian described in Eq 2. Therefore, it can
be directly programmed into a D-Wave QPU. A logical
qubit is one physical qubit or a set of strongly coupled
physical qubits created to compensate for the limited con-
nectivity of a single physical qubit and to mitigate bit
flips from thermal fluctuations. The graph embedding
used to map the network of logical qubits to the net-
work of physical qubits is found using default D-Wave
algorithms [11, 12, 13] and can be re-used for multiple
events. We need to program n

V

n
T

logical qubits and
n

V

n
T

(n
V

+ n
T

� 2)/2 couplings between them to encode
H

p

.

3. Results

To test the algorithm, we generate artificial events with
vertex positions in one dimension sampled from a simu-
lated distribution of p-p bunch crossings at the LHC inter-
action point within CMS. A Gaussian with 35 mm width
is a good representation of this distribution. The z0 pa-
rameter of toy tracks are sampled from Gaussians centered
around the generated vertices with widths corresponding
to realistic track resolutions measured in CMS [14]. These
widths range from 0.1 to 0.7 mm depending on the 3D mo-
mentum of the tracks, which are also sampled from mea-
sured track momentum distributions in CMS [14].

3.1. Primary vertexing one event

To illustrate the algorithm, we generate an event with
3 vertices where 5 tracks emanate from each vertex. This
requires 45 logical qubits to encode. The biases and cou-
plings between them are obtained from Eq. 4 in QUBO
form and displayed in Fig. 2.

It takes 8 ms to program the biases and couplings into
the QPU. Sampling the QPU for solutions consists of an-
nealing as described in Eq. 3, readout of the qubits, and

Figure 2: Biases and couplings between the logical qubits of the
QPU as coe�cients of the QUBO form used to solve a particular
event with 3 primary vertices and 15 tracks. The diagonal terms are
biases corresponding to the � term in Eq. 4.

Figure 3: Energy spectrum of solutions for one event with 3 primary
vertices and 15 tracks explored by the QPU with 10,000 samples.
Energies corresponding to valid solutions, where the pik add up to
1 for every track, are plotted with solid lines while invalid solutions
are plotted with dashed lines. Error bars correspond to statistical
uncertainties. The best and next-to-best valid solutions are indicated
as Solutions 1 and 2, respectively. For clarity, the histogram is binned
by 1 GHz below 10 GHz, by 10 GHz for 10 – 100 GHz, and by 100
GHz above 100 GHz. Events in 10 (100) GHz bins are normalized
by 10 (100).

3

๏ Clustering problem naturally expressed in QUBO form (V. Kumar, et. al. “Quantum annealing for combinatorial clustering” Quantum Inf. Processing 17 (2018) 39)

๏ We use D-Wave’s default embedding algorithms

Bias terms come from here

Coupling terms

➡ Probability (0 or 1) of ith track to have come from kth p-p collision is pik. Element pik is represented by a qubit

➡ g(D(i, j); m) seeks to distribute the couplings evenly without changing order. Else, lots of small couplings and some 
large couplings for p-p finding problem. Not for all clustering problems. Empirically seen to improve results with m = 5
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Performance on one event with 3 p-p collisions and 15 tracks

• QUBO bias terms are equal and come from the λ constraint
• Quantum state prepared and annealed 10,000 times. DW_2000Q_2_1 used

• 6,825 solutions are valid, i.e. λ constraint is strictly met (𝚺k pik = 1 for all tracks)
• 6,615 solutions are correct (Solution 1). Convergence efficiency = 66%
• Small number of valid secondary solutions where one track has been misassociated

Cartoon of energy profile in solution space. 
Tunneling is easy through tall narrow barriers. 
Classically difficult

Coefficients of QUBO form used to solve  
particular event with 3 collisions, 15 tracks

Energy spectrum of solutions for one event with 3 p-p collisions and 
15 tracks explored by the D-Wave 2000Q_2_1 with 10,000 samples. 
Energies corresponding to valid solutions, where pik add up to 1 for 
every track, are plotted with solid lines while invalid solutions are 
plotted with dashed lines. Error bars correspond to statistical 
uncertainties. The best and next-to-best valid solutions are indicated 
as Solutions 1 and 2, respectively. For clarity, the histogram is 
binned by 1 GHz below 10 GHz, by 10 GHz for 10 — 100 GHz, and by 
100 GHz above 100 GHz
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Principle: Equalize working time between CPU and QPU, and compare convergence efficiency

Sampling time of D-Wave 2000Q_2_1

• Total sample time = 164 μs
• Anneal time = 20 μs
• Readout time = 123 μs
• Delay time = 21 μs

• How many Simulated Annealing sweeps can we fit in this?
• Depends on problem complexity

Estimating CPU time per sweep

• Measure process time, not wall time
• Plot process time against nSweeps for 

different event topologies
• Discard overhead. Slope is time per 

sweep. 
• For 3 collision 15 tracks, 10.9 μs/

sweep. Thus, 15 sweeps would fit in 
D-Wave’s sampling time

CPU process time against number of sweeps for 
various event topologies under consideration

Time per sweep scales linearly 
with number of bits involved
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Sampling time of D-Wave 2000Q_2_1

• Total sample time = 164 μs
• Anneal time = 20 μs
• Readout time = 123 μs
• Delay time = 21 μs

• How many Simulated Annealing sweeps can we fit in this?
• Depends on problem complexity

Estimating CPU time per sweep

• Measure process time, not wall time
• Plot process time against nSweeps for 

different event topologies
• Discard overhead. Slope is time per 

sweep. 
• For 3 collision 15 tracks, 10.9 μs/

sweep. Thus, 15 sweeps would fit in 
D-Wave’s sampling time

CPU process time against number of sweeps for 
various event topologies under consideration

Time per sweep scales linearly 
with number of bits involved

Simulated annealing on CPU is only allowed as many iterations 
between βinit = 0.1 and βfinal = 10 as would fit 164 μs
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Performance on an ensemble of events

• 100 events with 3 p-p collisions and 15 tracks are thrown from measured CMS distributions
• Each event is sampled 10,000 times by both the QPU and the CPU (in equivalent time)

• Events with collisions spread closely compared to the spread of their tracks are hard for both QPU and CPU to solve
• A distribution of convergence efficiencies is observed

• QPU: mean = 42%, std. dev. = 25%
• CPU: mean = 24%, std. dev. = 11%
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Is there underlying structure to these distributions?
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• 100 events with 3 p-p collisions and 15 tracks are thrown from measured CMS distributions
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• Events with collisions spread closely compared to the spread of their tracks are hard for both QPU and CPU to solve
• A distribution of convergence efficiencies is observed

• QPU: mean = 42%, std. dev. = 25%
• CPU: mean = 24%, std. dev. = 11%

Performance against event “clumpiness”

• A measure of event clumpiness is the Dunn index. Low Dunn index = diffuse event, high = clumpy event

Is there underlying structure to these distributions?

numerator = minimum inter-cluster distance

denominator = maximum intra-cluster distance between tracks

• Convergence efficiency is plotted as a function of Dunn index. Shows expected structure
Increasing event clumpiness

• CPU: 0.33 ± 0.02
• QPU: 0.56 ± 0.14
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Performance on an ensemble of events

• 100 events with 3 p-p collisions and 15 tracks are thrown from measured CMS distributions
• Each event is sampled 10,000 times by both the QPU and the CPU (in equivalent time)

• Events with collisions spread closely compared to the spread of their tracks are hard for both QPU and CPU to solve
• A distribution of convergence efficiencies is observed

• QPU: mean = 42%, std. dev. = 25%
• CPU: mean = 24%, std. dev. = 11%

Performance against event “clumpiness”

• A measure of event clumpiness is the Dunn index. Low Dunn index = diffuse event, high = clumpy event

Is there underlying structure to these distributions?

numerator = minimum inter-cluster distance

denominator = maximum intra-cluster distance between tracks

• Convergence efficiency is plotted as a function of Dunn index. Shows expected structure

Convergence efficiency increases with event clumpiness. QPU beats CPU in efficiency for same running time

Increasing event clumpiness

• CPU: 0.33 ± 0.02
• QPU: 0.56 ± 0.14
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2 collisions, 10 tracks 2 collisions, 16 tracks 4 collisions, 12 tracks 4 collisions, 16 tracks

We scan over event topologies with increasing complexity

• CPU: 0.94 ± 0.01
• QPU: 0.98 ± 0.01

Maximum 
convergence 
efficiencies

• CPU: 0.46 ± 0.01
• QPU: 0.96 ± 0.01

• CPU: 0.32 ± 0.02
• QPU: 0.24 ± 0.12

• CPU: 0.17 ± 0.01
• QPU: 0.08 ± 0.08
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2 collisions, 10 tracks 2 collisions, 16 tracks 4 collisions, 12 tracks 4 collisions, 16 tracks

๏ QPU has advantage at low complexity. Why?
๏Can any measure highlight the tunneling advantage?

We scan over event topologies with increasing complexity

• CPU: 0.94 ± 0.01
• QPU: 0.98 ± 0.01

Maximum 
convergence 
efficiencies

• CPU: 0.46 ± 0.01
• QPU: 0.96 ± 0.01

• CPU: 0.32 ± 0.02
• QPU: 0.24 ± 0.12

• CPU: 0.17 ± 0.01
• QPU: 0.08 ± 0.08
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๏ One measure of complexity: Number of logical qubits used = number of collisions × number of tracks
๏ Trend: Asymptotic maximum of convergence efficiency plotted against logical qubits

๏ Spread of maximum convergence efficiency represented by uncertainty bars

QPU in BLACK
CPU in RED

QPU performance comparable to a modern CPU
QPU running may be further optimized
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Conclusions

๏ The D-Wave 2000Q_2_1 QPU can reconstruct p-p collision positions at hadron colliders in a limited capacity
➡ The Tevatron had ~ 3 p-p collisions per event. Would have been possible with D-Wave

๏ QPU implementation comparable to Simulated Annealing on MacBook CPU for equal time
๏ QPU implementation to be optimized for LHC complexities: 50 to 200 p-p collision per event

Outlook

Two research directions to improve QPU implementation:
๏ Improve convergence efficiency:

➡ Understand how distortion functions like g(x; m) work
➡ Use annealing offsets
➡ Tune annealing time, re-thermalization delay
➡ Try reverse annealing
➡ Optimize chain lengths and weights

๏ Fit larger problems on QPU:
๏ Customized embedding
๏ Solve larger problems with hierarchical clustering

S. Das, A. J. Wildridge, S. B. Vaidya, A. W. Jung, 
“Track clustering with a quantum annealer for 

primary vertex reconstruction at hadron colliders”
https://arxiv.org/abs/1903.08879

Track clustering with a quantum annealer for primary vertex reconstruction at

hadron colliders

S. Das, A. J. Wildridge, S. B. Vaidya, A. Jung

Department of Physics and Astronomy, Purdue University

Abstract

Clustering of charged particle tracks along the beam axis is the first step in reconstructing the positions of hadronic
interactions, also known as primary vertices, at hadron collider experiments. We use a 2048 qubit D-Wave quantum
annealer to perform track clustering in a limited capacity on artificial events where the positions of primary vertices and
tracks are drawn from distributions measured by the Compact Muon Solenoid experiment at the Large Hadron Collider.
The algorithm, which is not a classical-quantum hybrid but relies entirely on quantum annealing, is tested on a variety
of event topologies from 2 primary vertices and 10 tracks to 5 primary vertices and 15 tracks. It is benchmarked against
simulated annealing run on a modern CPU constrained to the same processor time per anneal as time in the physical
annealer, and performance is found to be comparable. We chart three research directions to improve the performance
of quantum annealers for this class of problems.

1. Introduction

Hadron colliders circulate counter-rotating beams of
hadrons in closely packed bunches that cross at designated
interaction points. These interaction points are instru-
mented with experiments that detect particles produced at
hadron-hadron collisions when the bunches cross. Recon-
structing the positions of these collisions within a bunch
crossing, also known as primary vertices, from the trajec-
tories of charged particles detected by the apparatuses is
of paramount importance for physics analyses. The Large
Hadron Collider (LHC) is a high luminosity collider that
produces an average of 20 proton-proton (p-p) collisions
at each bunch crossing, distributed in one dimension along
the beam axis. At one of the LHC interaction points, the
Compact Muon Solenoid experiment (CMS) reconstructs
the paths of charged particles from p-p collisions as tracks
detected by its silicon tracker [1]. Track reconstruction
uncertainties obscure which tracks originated together at
a primary vertex. Thus, primary vertex reconstruction be-
gins with a one-dimensional clustering of tracks by their
positions along the beam axis where they approach it most
closely, also known as the tracks’ z0. In this paper, we
demonstrate a method of performing this clustering on a
D-Wave quantum annealer and report preliminary results
benchmarked against simulated annealing on a classical
computer.

The D-Wave 2000Q quantum computer, available from
D-Wave Inc., performs computations through quantum an-
nealing [2, 3, 4]. The quantum processing unit (QPU)

Email addresses: das69@purdue.edu (S. Das),
anjung@purdue.edu (A. Jung)

has 2048 RF-SQUID flux qubits implemented as supercon-
ducting niobium loops [5]. Each qubit has a programmable
external magnetic field to bias it. The network of qubits
is not fully connected and programmable couplings have
been implemented between 6016 pairs of qubits. A compu-
tational problem is defined by setting the biases (h

i

) and
couplings (J

ij

) such that the ground state of the qubits’
Hamiltonian corresponds to the solution. We call this the
“problem Hamiltonian” (H

p

)
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z

is a spin projection observable of the ith qubit
with eigenvalues +1 and -1. (This z direction is not related
to the beam axis at CMS.) It may be trivially mapped to
a bit observable q
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with eigenvalues 0 and 1 through the
shift 2q
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+ I, where I is the identity matrix. The
problem Hamiltonian may then be expressed for quadratic
unconstrained binary optimization (QUBO) as
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notwithstanding energy o↵sets that are irrelevant for opti-
mization. The D-Wave 2000Q programming model allows
us to specify a problem in QUBO form by specifying a

i

and b
ij

.
At the beginning of a typical annealing cycle in the

QPU, a driver Hamiltonian puts all qubits in a superpo-
sition of the computational basis states by introducing a
global energy bias in the transverse x�direction. Anneal-
ing proceeds by lowering this driver Hamiltonian while si-
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