
Nonnegative/Binary Matrix Factorization with a
D-Wave Quantum Annealer

Daniel O’Malley (EES-16), Velimir V. Vesselinov (EES-16)
Boian S. Alexandrov (T-1), Ludmil B. Alexandrov (T-6)

Los Alamos National Laboratory

D-Wave Qubits Users Conference
September, 27 2017

LA-UR-17-23437

Matrix factorization is a fundamental applied math problem

I SVD: A = UΣV ∗ where Σ is diagonal, U,V are unitary

I QR: A = QR where Q is orthogonal, R is upper triangular

I LU: A = LU where L is lower triangular and R is upper
triangular

I Cholesky: A = LL∗ where L is lower triangular

I NMF: A ≈ BC where Bij ≥ 0 and Cij ≥ 0

I D-Wave NMF: A ≈ BC where Bij ≥ 0 and Cij ∈ {0, 1}

Low-rank matrix factorizations

A

≈

B

 C

Unsupervised ML via matrix factorization

Lee & Seung (Nature, 1999)

A = BC

I Each column of A is a vectorized
version of an image of a face

I Each row of A corresponds to a
particular pixel in the images

I Each column of B is a “feature”
that is used to reconstruct the
image

I Each row of B corresponds to a
particular pixel in the images

I Each column of C corresponds to
an image and describes how each
feature is present in the image

I Each row of C corresponds to a
feature and describes how that
feature is present in all the images

Unsupervised ML via matrix factorization on the D-Wave

Lee & Seung (Nature, 1999)

Are some of those features solid black? No

Pros/cons: D-Wave NMF versus classical NMF
Forget the D-Wave and just view this as a method

Pros

I The D-Wave NMF’s C matrix is ∼ 85% sparse, but classical
NMF’s C matrix is only ∼ 13% sparse

I The components of the D-Wave NMF’s C matrix require
fewer bits than classical NMF’s C matrix (1 bit vs. 64 bits)

I Viewed as lossy compression, the D-Wave NMF compresses
more densely

Cons

I Classical NMF’s reconstructions have slightly less than half as
much error as D-Wave NMF’s reconstructions

I Viewed as lossy compression, the D-Wave NMF loses more
information

I The B matrices are about 40% sparse for classical NMF, but
dense for D-Wave NMF

How to do it?

I Use “Alternating Least Squares”

1. Randomly generate a binary C
2. Solve B = argminX ||A− XC ||F classically
3. Solve C = argminX ||A− BX ||F on the D-Wave
4. Go to 2

I Step 3 is the interesting/D-Wave part

I In our analysis, A is 361× 2429, B is 361× 35 and C is
35× 2429.

I C has O(105) binary variables – far too many for the D-Wave,
but. . .

Step 3 in more detail

I C = argminX ||A− BX ||F where C and X are 35× 2429

I Step 3 is formulated above as a problem in 35× 2429 binary
variables, but it decomposes (“partitions”) into 2429 problems
with 35 binary variables each

I Ci = argminx ||Ai − Bx ||2 where Ci is the i th column of C and
x consists of 35 binary variables

I 35 binary variables fit on the D-Wave easily (can go to 49
with the VFYC)

I Imagine a Beowulf cluster of these. . .

What about performance?

What about performance?

1.0 1.5 2.0 2.5 3.0 3.5 4.0
log10(number of anneals)

1

2

3

4

5

lo
g 1

0(
cu

m
ul

at
iv

e
TT

T
[s

])

qbsolv
Gurobi
annealing time

I The D-Wave wins the cumulative time-to-targets modest
number of anneals are used (up to 1000), but loses to Gurobi
when 10,000 anneals are used

I qbsolv wins most problems, but loses very badly when it loses

I Gurobi takes too long to get rolling on the short time scales,
but wins over longer times

What about performance including non-annealing time?

I Solving 2429 QUBOs repeatedly can take a long time unless
you are careful

I Performance roadblocks
I ThreeQ.jl “symbolic” mode
I SAPI embedding
I SAPI async_solve_qubo+await_completion+p.result()

I By overcoming the performance roadblocks, executing “Step
3” on a 361× 2429 matrix can be done in a few minutes

I In the cumulative time-to-targets benchmark, qbsolv could
sometimes lose even when I/O time was included

What about performance including non-annealing time?
ThreeQ.jl “symbolic” mode

function setupsmallqubo(A, B, j)

m = ThreeQ.Model(...)

@ThreeQ.defvar m Ccolj[1:size(B, 2)]

for k = 1:size(B, 2)

lincoeff = 0.0

for i = 1:size(A, 1)

lincoeff += B[i, k] * (B[i, k] - 2 * A[i, j])

end

@ThreeQ.addterm m lincoeff * Ccolj[k]

for l = 1:k - 1

quadcoeff = 0.0

for i = 1:size(A, 1)

quadcoeff += 2 * B[i, k] * B[i, l]

end

@ThreeQ.addterm m quadcoeff * Ccolj[k] *

Ccolj[l]

end

end

return m, Ccolj

end

function setupsmallqubo(A, B, j)

Q = zeros(size(B, 2), size(B, 2))

for k = 1:size(B, 2)

for i = 1:size(A, 1)

Q[k, k] += B[i, k] * (B[i, k] - 2 * A[i, j])

end

for l = 1:k - 1

for i = 1:size(A, 1)

Q[k, l] += 2 * B[i, k] * B[i, l]

end

end

end

return Q

end

What about performance including non-annealing time?
SAPI embedding

I SAPI’s embed_problem uses a “one-step” embedding process
I Works great if you only have to embed the problem once
I Slow if you have to embed the same problem repeatedly

I Wrote a custom replacement for SAPI’s embed_problem
using a “two-step” embedding process

1. Find the couplings that are used as part of the embedding and
determine how the coefficient will be spread across the
couplers/qubits. Do this once.

2. Use the result from step 1 to perform the embedding. Do this
repeatedly.

I Also important to call find_embedding only once (obviously)

What about performance including non-annealing time?
SAPI async solve qubo+await completion+p.result()

I Downloading 2429 results from the D-Wave system in serial is
slow

I I.e., 2429 calls to p.result() in serial is slow

I Use multiple processes to download results in parallel
I Use async_solve_qubo then await_completion to wait for

nworkers() results to be ready
I Effectively perform one p.result() for each worker process to

download the results in parallel
I Actually, had to reimplement p.result() from scratch,

probably due to an issue with julia’s python interface

I Probably a lot of room for improvement here
I For example, often don’t need to download all the samples –

just the best will do
I Would be great to do the computation closer to the D-Wave

to reduce round-trip time

Conclusions

I Utilized the D-Wave to solve a practical, unsupervised,
machine-learning problem

I The D-Wave outperforms two state-of-the-art classical codes
in a cumulative time-to-target benchmark when a
low-to-moderate number of samples are used

I Limitations in getting problems into/out of the D-Wave make
these benefits hard to leverage, but the situation should
improve with future D-Wave hardware

I Custom heuristics would likely beat the D-Wave even in this
benchmark

I Large datasets can be analyzed on the D-Wave with this
algorithm

I We factored a 361× 2429 matrix for consistency with Lee &
Seung (Nature, 1999), but going larger is not a problem

I The D-Wave only limits the rank of the factorization
I Not a major limitation, because we want the rank to be small

Preview: PDE-constrained optimization on the D-Wave

2D elliptic PDE using a custom embedding that leverages the
virtual full yield chimera solver

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

	fd@rm@0:

