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QUBO Problems with real variables
We define a QUBO problem with real variables as a Quadratic 
Unconstrained Optimization problem with unknown variables 

expressed as:



Graphical representation
QUBO problems of this kind are particularly difficult to solve.  

Especially with annealing techniques. 

 This is due to the exponential dependence of the coefficients from the binary 
variable indices, which create numerous local minima very similar to the global 

minimum.

"Normal" QUBO landscape "Real-variables" QUBO landscape



Solving a linear system



Attempt number 1: Forward Annealing

BEST RESULT

EXACT RESULT



Local refinement of solutions:
Reverse Annealing

Image taken from Reverse Quantum Annealing for Local Refinement of Solutions, D-Wave White Papers, 2017 


Introduced with the last D-Wave model, DWAVE2000Q

Starting point  
chosen by the user

Backward 
Annealing 

Forward 
Annealing 

During the Backward Annealing phase, the transverse field slowly increases up to 
a value chosen by the user (Reversal Distance) 

The last Forward Annealing phase is a LOCAL quantum annealing search:  
how much local depends on the reversal distance value. 



Tuning the reversal distance



Attempt number 2: 
 Forward Annealing + Reverse Annealing

YesNo



Attempt number 2: 
 Forward Annealing + Reverse Annealing

YesNo

18%

82%

Not Solved Solved



Pausing the annealing process

Starting point  
chosen by the user

Backward 
Annealing 

Forward 
Annealing 

Pause 

Being able to pause the annealing process is another of the new features introduced 
with the latest D-WAVE quantum annealer.

We can use the pause during a Reverse Annealing search in this way:

Why pause? Because pausing the annealing process means better exploration of the 
selected zone, increasing the chances of obtaining a new global minimum.

But pay attention: pause can't be too long. For two main reasons: 
1) it increase the computational time of each annealing cycle. 

2) if it is too long, it may also risk to increase the search radius more than desired.



Correlation between pause and search radius
We can realize a posteriori the search radius of a reverse annealing search by analyzing 

the average distance between the solutions found by each cycle.

To do this, we choose the Hamming distance, a function written to calculate the 
distance between vectors of binary numbers.
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Pausing time

We have observed that there is a 
correlation between the pause 
time and the average distance 

between the solutions obtained 
with each annealing cycle

As with the reversal distance, here 
too we have to be careful about 

the right break time:  

too little is not enough,  
too much can lead to wrong 

results



Attempt number 3: 
 Forward Annealing +  

Reverse Annealing with pause

YesNo



Attempt number 3: 
 Forward Annealing +  

Reverse Annealing with pause

YesNo
76%

24%

Not Solved Solved



Low-rank Nonnegative Matrix 
Factorization



Our case
We want to perform a k=2 NMF. 

To calculate the factorization, we have chosen an  
ALS (Alternating Least Squares) approach:

Reverse annealing + pause. 
D-WAVE SOLVER CLASSIC SOLVER

Python library  
lsqnonneg.py

Problem decomposition of the D-WAVE part:



Results

We generated 35 random initial matrices "H".   
For each of them, we started a double factorization, with both the algorithms.  

We measure the goodness of a factorization with the value of the norm

We have tested our mixed DWAVE-classic algorithm versus the same algorithm entirely 
written with the python library lsqnonneg.py
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Convergence 
 rate 100% 100%

Number of 
Iterations 
(Average)

40 10000

Best result: 
Residual Norm 
(Iterations)

5.98e-08 
(32)

2.25e-07 
(10000)



Thank you!


